Plastics as Tracers to Understand Physical Ocean Processes

Kara Lavender Law Sea Education Association Woods Hole, MA

WHOI Microplastics 18 October 2019

Motivating Questions

Plastics as a contaminant:

- Where is all the plastic? (Mass budget)
- What is the environmental fate of ocean plastics? (Transformation & sinks)
- What are the biological impacts of ocean plastics?

Plastics as a tracer:

 How can the distribution and transport of ocean plastics inform our understanding of ocean physics?

Sea Education Association Measuring surface plastic since the 1980s

Plankton net particles: the tracer

Area

Particle size: mass, area, length N. Pacific gyre > N. Atlantic gyre

Particle mass: fragments only N. Pacific gyre > N. Atlantic gyre > Med.

North Atlantic polymer type

Polymer (type	Count (#) c	% by ount	Mass ʻ (g) m	% by N nass Pr	I.A. od. ¹ N	U.S. ⁄ISW²	
PE	843	77.1	12.76	67.6	12.34	9.69	
PP	61	5.6	0.62	3.3	5.70	2.89	
PS	12	1.1	0 16	0.8		2.14	-
PE+PP	2	0.2	0 <mark>,</mark> 01	0.0			
Unknown	175	16.0	5 <mark>.</mark> 33	28.2			
¹ Average North ² Average muni	n American r cipal solid w	esin produc aste genera	tion in millior ation in millio	n metric tons n metric tons	from 1986-2 from 1993-	2007 (ACC) 2007 (U.S. EP/	۹)
			. ↓		- ↓	. ↓	

20:1

~3:1

~2:1

SEA data: western North Atlantic > 6,600 plankton net tows from 1986 – 2010

Law et al., 2010

SEA data: eastern Pacific Ocean > 2,500 plankton net tows from 2001-2012

Law et al., 2014

Global plankton net tows > 11,800 tows between 1971 – 2013

a) Maximenko microplastic counts [#/km2, log10 scale)

Van Sebille et al., 2015

Data informing models North Atlantic

astic counts [#/km2, log10 scale]

Van Sebille et al., 2015

Models informing data: Is there a 6th Garbage Patch?

Spatial and temporal variability: Wind-driven vertical mixing

Kukulka et al., 2012

108

Spatial and temporal variability: Turbulent vertical mixing

Evidence for the Influence of Surface Heat Fluxes on Turbulent Mixing of Microplastic Marine Debris

TOBIAS KUKULKA

University of Delaware, Newark, Delaware

KARA L. LAW

Sea Education Association, Woods Hole, Massachusetts

GIORA PROSKUROWSKI

University of Washington, Seattle, Washington

Brunner et al., 2015

Spatial and temporal variability: When is a windrow not a windrow?

SCOR Working Group 153: Floating Litter and its Oceanic TranSport Analysis and Modelling (FLOTSAM)

Preamble

In September 2017, the Scientific Committee on Oceanic Research, with financial assistance of the National Science Foundation, approved and created the Working Group #153 on Floating Litter and its Oceanic TranSport Analysis and Modelling (FLOTSAM)

Members

Chairs and Vice-Chairs

- 1. Stefano Aliani (IT)
- 2. Nikolai Maximenko (US)
- 3. Kara Lavender Law (US)
- 4. Erik van Sebille (NL)

Full Members

- 1. Bertrand Chapron (FR)
- 2. Irina Chubarenko (RU)
- 3. Atsuhiko Isobe (JP)
- 4. Victor Martinez-Vicente (UK)
- 5. Peter Ryan (ZA)
- 6. Won Joon Shim (KR)
- 7. Martin Thiel (CL)

Associate **Members**

- 1. Melanie Bergmann (DE)
- 2. Yi Chao (US)
- 3. Baylor Fox-Kemper (US)
- 4. Denise Hardesty (AU)
- 5. Tobias Kukulka (US)
- 6. Laurent Lebreton (NZ)
- 7. Christophe Maes (FR)
- 8. Miguel Morales Magueda (UK)

Observer Members

- 1. Joao Sousa (IUCN)
- 2. Georg Hanke (EU-JRC)
- 3. Nancy Wallace (NOAA)

The physical oceanography of the transport of floating marine debris

Erik van Sebille¹, Stefano Aliani², Kara Lavender Law³, Nikolai Maximenko⁴, José M. Alsina⁵, Andrei Bagaev^{6,7}, Melanie Bergmann⁸, Bertrand Chapron⁹, Irina Chubarenko⁶, Andrés Cózar¹⁰, Philippe Delandmeter¹, Matthias Egger¹¹, Baylor Fox-Kemper¹², Shungudzemwoyo P. Garaba^{11,14}, Lonneke Goddijn-Murphy¹⁵, Britta Denise Hardesty¹⁶, Matthew J. Hoffman¹⁷, Atsuhiko Isobe¹⁸, Cleo E. Jongedijk¹⁹, Mikael L. A. Kaandorp¹, Liliya Khatmullina⁶, Albert A. Koelmans²⁰, Tobias Kukulka²¹, Charlotte Laufkötter²², Laurent Lebreton¹¹, Delphine Lobelle^{1,23,24}, Christophe Maes^{9,25}, Victor Martinez-Vicente²⁶, Miguel Angel Morales Magueda²⁷, Marie Poulain-Zarcos²⁸, Ernesto Rodríguez²⁹, Peter G. Ryan³⁰, Alan L. Shanks³¹, Won Joon Shim³², Giuseppe Suaria², Martin Thiel^{33,34,35}, Ton S. van den Bremer³⁶, and David Wichmann¹

Physical ocean processes

Littoral	Continental Shelf	Offshore
		and the second se
		_
-		
		1
-		-
		-
500 500	5m 10m 50m 100	m 500m >1000m
PLOT		an soon - cooun

PHYSICAL PROCESSES

- Large-scale open ocean processes
- Submesoscale open ocean processes
- Open ocean Stokes drift
- Internal waves
- Direct wind transport (windage)
- Langmuir circulation
- G Vertical mixing
 - Ice formation, melting and drift
 - River plumes and coastal fronts
 - Coastal currents, surface waves and beaching
 - Extreme events
 - Transport by biology

van Sebille et al., 2019, submitted

Coastal ocean processes: A critical knowledge gap

Figure 5: Schematic of the processes that transport plastics in the coastal zone. Adapted from Figure 1.2 of van der Zanden (2016).

van Sebille et al., 2019, submitted

Where is all the plastic? No detectable trend 1986 – 2008

Lack of Observed Time Trend Hypothesis #1

"Removal" processes:

1. Transport to depth via:

- Buoyancy increase (biological colonization)
- Incorporation into sinking biological aggregates
- Ingestion (vertically migrating species)
- 2. Coastal deposition
- **3.** Fragmentation to sizes smaller than plankton net mesh (335 μm)

Collective removal rate > Input rate 22

Lack of Observed Time Trend Hypothesis #2

Trend obscured by <u>spatiotemporal</u> variability in data set caused by:

- 1. Sampling conditions (e.g., tow length)
- 2. Wind-driven vertical mixing
- 3. Submesoscale surface convergences (D'Asaro et al. 2018; Laxaque et al. 2018)
- 4. Shifts in large-scale subtropical gyre
- 5. Variability in sampling locations over time

Generalized Additive Model 7,500 tows, 1986 – 2015

Evidence of a trend of microplastics concentration increasing *faster* than cumulative global plastic production.

Removal rate < Input rate!!

Wilcox et al., in revision

Conclusions

1. Ocean physics influences plastics distribution 2. Ocean plastics are useful as a tracer 3. Neuston net data are useful... 4. ...even if they can't measure everything 5. ...and especially if you have amazing SEA Semester students!

Modelling Plastics in the Oceans

What is happening? What can we do about it?

OCEAN SCIENCES

MEETING |

16–21 FEBRUARY 2020 SAN DIEGO, CA, USA

November 6-8, 2019 **MIT Samberg Center**

PS008: Physical processes governing the distribution and transport of dispersed particles in the ocean