National Institute of Standards and Technology U.S. Department of Commerce

STANDARDS FOR MEASUREMENT SCIENCE OF MICROPLASTIC POLLUTION

Jennifer M. Lynch, Ph.D.

Research Biologist, Chemical Sciences Division, National Institute of Standards and Technology

Co-Director, Center for Marine Debris Research, Hawaii Pacific University

FARCH.

CENTE

CENTER FOR MARINE DEBRIS RESEARCH

MISSION:

The Center for Marine Debris Research develops and applies optimal methods to investigate the sources, transport, fate, and impacts of plastic marine debris. The Center also disseminates this knowledge to inform management and stimulate ocean stewardship.

VISION:

The ultimate goal of all activities of the Center for Marine Debris Research is a trash-free ocean.

WHERE?

WHY?

WHO?

WHEN?

CMDR hosts HI Marine Debris Action Plan Research Workshop

WHAT?

Biology

Chemistry

Policy and Economics

Engineering

Physics

NIST'S ROLE

"There are limitless possibilities for NIST to be involved in the marine debris issue and there's a huge need."

-Stewart Harris

Director, Marine and Environmental Stewardship, Plastics Division, American Chemistry Council

Describe best practices

Harmonize methods

Produce reference materials

Transfer measurement technologies

NIST – HAWAII PACIFIC UNIVERSITY PARTNERSHIP

- NIST transfers technology to CMDR to educate students on best practices
- CMDR applies best methods to answer fundamental questions
 - Sources
 - Timing of littering
 - Quantities
 - Types

- Quantities of additives or contaminants
- Biological effects
- Transport and fate of debris
- Testing effectiveness of policies or engineering

Results inform NIST as to what standards are needed

STANDARDIZATION & ACCURACY IS NEEDED

SCIENCE AND TECHNOLOGY FOR AMERICA'S OCEANS: A DECADAL VISION

A Report by the SUBCOMMITTEE ON OCEAN SCIENCE AND TECHNOLOGY COMMITTEE ON ENVIRONMENT

of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL

NOVEMBER 2018

Priorities

- Establish reliable and reproducible methods for monitoring marine debris, including the collection, extraction, characterization, and quantification of plastics across various environmental compartments (e.g., shoreline, sea surface, water column, seafloor, and biota) in both marine and freshwater systems.
- Improve understanding of the transport and fate of marine debris within and among environmental compartments as a result of oceanographic processes and the variable processes of degradation, fragmentation, biofouling, and bioaggregation among polymer types.
- Support development of next-generation biodegradable plastics to reduce marine debris impacts on marine life and coastal communities.
- Estimate the risks associated with microplastic exposure for commercial seafood resources and humans to improve the understanding of potential exposure pathways, toxicological mechanisms, and public health concerns.
- Collaborate with industry to evaluate current (and if necessary, develop new) innovative, costeffective technologies and methodologies to gather, recycle/reuse, and treat plastic waste.

STANDARDIZATION & ACCURACY IS NEEDED

Compare across studies

• Monitor spatial and temporal trends

Assess risk

Inform policies

- Monitor effectiveness of single-use item bans, recycling changes
- Meet water quality standards

MEASUREMENT CHALLENGES

- Wide range of particle sizes (nm to m)
- Expanding diversity of polymers and additives
- Isolation of polymers from complex environmental matrices
- Rapidly evolving detection technology
- Background contamination
- Few polymer standards
- Little to no reference materials

THREE STUDIES

Sea turtles
Beach debris
Larval fish

THREE STAGES NEEDING STANDARDIZATION

Sample preparation
Polymer characterization
Data reporting (units units units!)

SEA TURTLES INGEST A LOT OF PLASTIC

Clukey et al. 2017 Mar Pollut Bull

BEST REPORTING UNITS

- <u>Quantities are better than</u> percent occurrence
- Include non-detects
- Report both particle counts and mass of polymers
- g/kg is best unit for biota

Lynch 2018 ES&T

BEST REPORTING UNITS

- Quantities are better than percent occurrence
- Include non-detects
- Report both particle counts and mass of polymers
- g/kg is best unit for biota

Lynch 2018 ES&T

BEST REPORTING UNITS

- Quantities are better than percent occurrence
- Include non-detects
- <u>Report both particle counts</u>
 <u>and mass of polymers</u>
- g/kg is best unit for biota

Lynch 2018 ES&T

POLYMER IDENTIFICATION METHODS

Google Scholar search on Aug 24, 2019, for "Polymer identification marine debris" since 2018. Top 27 hits of only primary sources

POLYMER IDENTIFICATION METHODS

Marine Pollution Bulletin 127 (2018) 704–716

Contents lists available at ScienceDirect

Marine Pollution Bulletin

journal homepage: www.elsevier.com/locate/marpolbul

Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms

Melissa R. Jung^a, F. David Horgen^a, Sara V. Orski^b, Viviana Rodriguez C.^b, Kathryn L. Beers^b, George H. Balazs^c, T. Todd Jones^c, Thierry M. Work^d, Kayla C. Brignac^e, Sarah-Jeanne Royer^f, K. David Hyrenbach^a, Brenda A. Jensen^a, Jennifer M. Lynch^{g,*}

BEACH DEBRIS POLYMER COMPOSITION

Brignac et al. in press ES&T

FOUR-STEP WORKFLOW

1. ATR FT-IR

- 2. FT-IR total transmission of thin film
- 3. Differential Scanning Calorimetry

4. Optical or FT-IR microscopy of cross sections

1. ATR FT-IR

 FT-IR total transmission of thin film

 Differential Scanning Calorimetry

 4. Optical or FT-IR microscopy of cross sections

1. ATR FT-IR

 FT-IR total transmission of thin film

 Differential Scanning Calorimetry

4. Optical or
 FT-IR
 microscopy
 of cross
 sections

Inner layer is EVA; outer layer is PS

Inner layer is PE/EVA/EVOH ; outer layer is PS

1. ATR FT-IR

- 2. FT-IR total transmission of thin film
- Differential Scanning Calorimetry
- 4. Optical or FT-IR microscopy of cross sections

Inner layer is EVA; outer layer is PS

- Inner layer is PE/EVA/EVOH ; outer layer is PS
- 23-25% EVA/LDPE/LLDPE/EVOH (cannot see PS)

1. ATR FT-IR

- 2. FT-IR total transmission of thin film
- 3. Differential Scanning Calorimetry
- 4. Optical or FT-IR microscopy of cross sections

- Inner layer is EVA; outer layer is PS
- Inner layer is PE/EVA/EVOH ; outer layer is PS
- 23-25% EVA/LDPE/LLDPE/EVOH (cannot see PS)

FOUR-STEP WORKFLOW REVEALED...

- 8 % of HI beach debris items were multi-layer composites
- 63 % (15 / 24) of HI beach debris items were made of multiple polymers
- 11 of those (73 %) were not revealed by ATR FT-IR alone
- Multiple methods are required

Lynch et al. in prep.

LARVAL FISH

Gove & Whitney et al. in press PNAS

HAWAII SEA SURFACE (pieces/km²)

Eriksen et al. 2014 Gove & Whitney et al. in press PNAS

LARVAL FISH INGEST MICROFIBERS

Gove & Whitney et al. in press PNAS

CHEMICAL COMPATIBILITY OF FISH DIGESTION METHODS

	1W 95% Ethanol	1M 95% Ethanol	70% Nitric Acid	Fenton's Reagent	Bleach	10% KOH
PET	ОК	ОК	NO	ОК	ОК	ОК
HDPE	ОК	ОК	ОК	ОК	ОК	ОК
PVC	ОК	ОК	ОК	ОК	ОК	ОК
LDPE	ОК	ОК	ОК	ОК	ОК	ОК
PP	ОК	ОК	ОК	ОК	ОК	ОК
PS	ОК	NO	ОК	ОК	ОК	ОК
CA	NO	NO	NO	ОК	ОК	NO
EVA	ОК	ОК	ОК	ОК	ОК	ОК
Ny	ОК	ОК	NO	ОК	ОК	ОК
Phth. > Polymer	NO	NO	NO	ОК	ОК	ОК
PU	OK	ОК	NO	ОК	ОК	ОК
W. Cotton Fiber	NO	NO	NO	NO	NO	ОК
B. Cotton Fiber	NO	NO	NO	NO	NO	ОК
Polyester Fiber	NO	NO	NO	ОК	ОК	NO
PLA	OK	ОК	NO	ОК	ОК	NO
Key						
ОК	<10% Decrease in Mass					
NO	10-25% Decrease in Mass					
NO	25%- 75% Decrease in Mass					
NO	75-100% Decrease in Mass					

Karr et al. in prep.

- Environmental chemistry
- Polymer science
- Material weathering
- Polymer and environmental SRMs
- Cryohomogenization reference material production facility
- Inter-laboratory comparisons
- Circular Economy Initiative (Kathryn Beers)

- Environmental chemistry
- Polymer science
- Material weathering
- Polymer and environmental SRMs
- Cryohomogenization reference material production facility
- Inter-laboratory comparisons
- Circular Economy Initiative (Kathryn Beers)

- Environmental chemistry
- Polymer science
- Material weathering
- Polymer and environmental SRMs
- Cryohomogenization reference material production facility
- Inter-laboratory comparisons
- Circular Economy Initiative (Kathryn Beers)

- Environmental chemistry
- Polymer science
- Material weathering
- Polymer and environmental SRMs
- Cryohomogenization reference material production facility
- Inter-laboratory comparisons
- Circular Economy Initiative (Kathryn Beers)

- Environmental chemistry
- Polymer science
- Material weathering
- Polymer and environmental SRMs
- <u>Cryohomogenization reference</u> <u>material production facility</u>
- Inter-laboratory comparisons
- Circular Economy Initiative (Kathryn Beers)

NIST'S CAPABILITIES/FACILITIES

- Environmental chemistry
- Polymer science
- Material weathering
- Polymer and environmental SRMs
- Cryohomogenization reference material production facility
- Inter-laboratory comparisons
- Circular Economy Initiative (Kathryn Beers)

Anal. Chem. 2001, 73, 1252-1262

NIST-Sponsored Interlaboratory Comparison of Polystyrene Molecular Mass Distribution Obtained by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry: Statistical Analysis

Charles M. Guttman,[†] Stephanie J. Wetzel,^{*,‡} William R. Blair,[†] Bruno M. Fanconi,[†] James E. Girard,[‡] Robert J. Goldschmidt,[†] William E. Wallace,[†] and David L. VanderHart[†]

Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, and Chemistry Department, American University, Washington, D.C. 20016

- Environmental chemistry
- Polymer science
- Material weathering
- Polymer and environmental SRMs
- Cryohomogenization reference material production facility
- Inter-laboratory comparisons
- <u>Circular Economy Initiative</u> (Kathryn Beers)

Charting the Course for Remanufacturing in the Circular Economy

f in 🎔

Goal: Create a consortium to develop a technology roadmap for the expansion and advancement of capabilities and competitiveness of the remanufacturing industry using the Circular Economy construct.

NIST POLYMER SRMs

At least 27 consisting of 7 polymers

Main		
polymer	SRM	Description
HDPE	1483a	Linear Polyethylene
HDPE	1484a	Linear Polyethylene
LDPE	1473C	Low Density Polyethylene Resin
LDPE	1476a	Branched Polyethylene Resin
PE	1474b	Polyethylene Resin
		Linear Polyethylene Narrow Molecular Mass Distribution (Nominal Mass-Average
PE	1482a	Molar Mass of 32 100 g/mol)
PE	1496	Unpigmented Polyethylene Gas Pipe Resin
PE	2855	Additive Elements in Polyethylene
PE	2885	Polyethylene (Mw, 6 280 g/mol)
PE	2887	Polyethylene (Mw, 196 400 g/mol)
PE	8540	IAEA-CH-7 (Carbon and Hydrogen Isotopes in Polyethylene Foil)
PMMA	1487	Poly(Methyl Methacrylate) (6 K Narrow Molecular Weight Distribution)
PMMA	1488	Poly (Methyl Methacrylate) 29 K Narrow Molecular Weight Distribution
PS	705a	Polystyrene (Narrow Molecular Weight Distribution)
PS	706a	Polystyrene (Broad Molecular Mass Distribution)
PS	1453	Thermal Conductivity - Expanded Polystyrene Board
PS	1478	Polystyrene (Narrow Molecular Weight Distribution)
PS	1479	Polystyrene (Narrow Molecular Weight Distribution)
PS	1691	Polystyrene Spheres (Nominal Diameter 0.3 μm)
PS	1961	Polystyrene Spheres 30 µm Diameter Polystyrene Spheres
PS	1965	Microsphere Slide (10-µm Polystyrene Spheres)
PS	2870	Relative Permittivity and Loss Tangent 1422 Cross-Linked Polystyrene
PS	2881	Polystyrene Absolute Molecular Mass Distribution Standard
PVC	2859	Restricted Elements in Polyvinyl Chloride
PVC	2860	Phthalates in Polyvinyl Chloride
PVC	2861	Restricted Elements in Polyvinyl Chloride
ETFE	8634	Ethylene Tetrafluoroethylene for Particle Size Distribution and Morphology
PLC	8394	Tissue Engineering Reference Scaffolds for Cell Culture

NIST ENVIRONMENTAL SRMs

4 matrices never tested for plastic particles

Matrix	SRM	Description
Dust	2584	Trace Elements in Indoor Dust (Nominal Mass Fraction of 1 % Lead)
Dust	2585	Organic Contaminants in House Dust
Dust	8632	Ultra Fine Test Dust (UFTD)
Dust	8785	Air Particulate Matter on Filter Media
Dust	8786	Filter Blank for RM 8785
Dust	1649b	Urban Dust
Sediment	1944	New York/New Jersey Waterway Sediment
Sediment	2702	Inorganics in Marine Sediment
Sediment	2703	Sediment for Solid Sampling (Small Sample) Analytical Techniques
Sediment	8704	Buffalo River Sediment
Sediment	1646a	Estuarine Sediment
Sediment	1941b	Organics in Marine Sediment
Sludge	2781	Domestic Sludge
Sludge	2782	Industrial Sludge
Soil	2587	Trace Elements in Soil Containing Lead from Paint (Nominal Mass Fraction of 3000 mg/kg Lead)
Soil	2709a	San Joaquin Soil Baseline Trace Element Concentrations

REFERENCE MATERIAL IDEAS

1. Kit of 25-50 different polymer nurdles/coupons

2. Cryogrind polymers to specific particle sizes

3. Quantify and characterize microplastic particles in existing environmental SRMs

THANK YOU!

• John Kucklick, Rebecca Pugh, Kate Beers, Sara Orski, Katy Shaw

📲 • Brenda Jensen, David Hyrenbach, Melissa Jung, Kayla Brignac, Kathleen Page, David Horgen,

• Rachel Sandquist, Ashok Deshpande, Nigel Lascelles, Dante Freeman, Davielle Drayton, Jon Whitney, Jamie Gove, Jana Phipps, George Balazs, T. Todd Jones, Shandell Brunson

• Wanda Weatherford, Ron Abbott, Rick Wagner

Bridget O'Donnell Scientific

- Ray Aivazian, Sarah-Jeanne Royer, Jim Potemra, Nikolai Maximenko, Anupam Misra, Lloyd
 Hihara, Jan Kealoha, Katharine Clukey
- Cheryl King, Jens Currie, Megan Lamson, Lauren Blickley, Kahi Paccaro, Fawn Leibengood, Hank Lynch

FOLLOW US

CENTER FOR MARINE DEBRIS RESEARCH

Website: www.hpu.edu/cncs/cmdr

in

@MarineDebrisResearch

@debrisresearch

@company/center-for-marine-debris-research