



## Producing secondary nano- and microplastics by photooxidation and (or) mechanical abrasion

Microplastics in the World Ocean Woods Hole Oceanographic Institution 16-18 October 2019

Young Kyoung Song<sup>1</sup>, <u>Won Joon Shim</u><sup>1,2</sup>, Sang Hee Hong<sup>1,2</sup>, Soeun Eo<sup>1,2</sup>

<sup>1</sup>Korea Institute of Ocean Science and Technology (KIOST) <sup>2</sup>Korea University of Science and Technology (UST)





#### Weathering of plastics in the environment

- Solar UV-induced photochemical oxidation
- Thermal reactions including thermal oxidation
- Hydrolysis of the polymer
- Microbial biodegradation



#### Weathering of plastics on the beach environment

#### How many nano- and microplastics are generated by natural weathering?



#### Accelerated fragmentation exp. : UV exposure + mechanical abrasion

#### **UV** exposure



- Low Density Polyethylene (LDPE),

Polypropylene (PP), Expanded polystyrene (EPS)

- Temp: 43-45°C
- Period: 2, 6 & 12 months
- UV: Metal halide lamp



#### **Mechanical abrasion**

- Rolling with sand at about 36-38 rpm
- Period: 2 months
- Triplicates



#### Nile Red staining

- Staining on a filter paper with 200  $\mu l$  of 5 mg/L Nile Red solution in hexane
- Washing with 100  $\mu l$  of hexane
- Quantification with a fluorescent microscope (~ x200)
- Ex/Em wavelength: 450-490 / 515-565 nm



3

### Fragmentation of microplastics by UV exposure and subsequent mechanical abrasion (MA) with sands



Song et al. (2017) Environ. Sci. Technol. 51:4368

Micro ERA

#### Why expanded polystyrene (EPS)

- Common litter item and widespread in marine and fresh water
  - Reddy et al., 2006, Corcoran et al., 2015, Collignon et al., 2012, Poeta et al., 2014, Kang et al., 2015
- Identified as being exceptionally high in abundance on beaches mostly in Asia
  - Lee et al., 2013, Heo et al., 2013, Fok and Cheung 2015, Fok et al., 2017, Hinojosa and Thiel, 2009, Vietnam (GreenHub)
- Large amount of EPS floats have been used in aquaculture in Asian countries
- Susceptible to outdoor weathering and easily fragmented by UV exposure





#### **Foamed structure of EPS**

#### Interior of new EPS



Mejia-Torres et al. (2018) Polym. Bull. 75:5619



#### Interior of weathered EPS for 9 months



#### **Fragmentation by sunlight exposure**

#### Sunlight exposure



#### **Total solar irradiance and temperature**

- 3 Mon (3M) : 1.0 (1,641 MJ/m<sup>2</sup>)
- 6 Mon (6M) : 1.4 (2,352 MJ/m<sup>2</sup>)
- 7 Mon (7M) : 1.6 (2,632 MJ/m<sup>2</sup>)
- 9 Mon (9M) : 2.4 (3,995 MJ/m<sup>2</sup>)
- 24 Mon (24M): 7.6 (12,391 MJ/m<sup>2</sup>)

- Based on average total solar irradiance measured per hour in 2009-2010 in Geoje, South Korea

- Polymer: EPS container purchased from a market
- EPS cube: placed in borosilicate Petri-dish w/o lid
- Quartzes chamber: 50 x 50 cm
- Exposed top surface area: 3 x 3 cm
- Sunlight exposure duration: ~24 months
- Subsample: 3, 6, 7, 9, and 24 months
- Place: KIOST, Geoje, South Korea



#### Additive chemicals in EPS

| LC-MS/MS ( | (HPLC-TQ5500) |
|------------|---------------|
|------------|---------------|

Unit: ng/g

| Additive che     | emicals        | EPS #1  | EPS #2  |
|------------------|----------------|---------|---------|
| Placticizor      | DBP            | 1,157   | 787     |
| Plasticizei      | DnOP           | N.D     | N.D     |
|                  | UVMC80         | N.D     | N.D     |
|                  | UV320          | N.D     | N.D     |
| UV stabilizer    | UV326          | N.D     | N.D     |
|                  | UV327          | N.D     | N.D     |
|                  | UV328          | N.D     | N.D     |
|                  | 2,4-DTBP       | N.D     | N.D     |
| Antioxidant      | Irganox 1010   | N.D     | N.D     |
|                  | Irganox 1076   | N.D     | N.D     |
| Surfactant       | NP             | N.D     | N.D     |
| Bisphenol-A      | BPA            | N.D     | N.D     |
|                  | $\alpha$ -HBCD | 78,840  | 72,866  |
| Brominated       | $\beta$ -HBCD  | 105,120 | 117,988 |
| Flame Retardants | γ-HBCD         | 78,499  | 85,366  |
|                  | PBCD           | 354,949 | 393,293 |

\*N.D: Not Detected

#### **Recovery and analysis of the fragmented particles**

#### Particle analysis



Two different groups according to size

>0.8 / (micro)/ <0.8 / (nano)

- Image and qualitative analysis
  - Scanning electron microscope-energy dispersive spectroscopy (SEM-EDS)
  - Fluorescence microscope
  - Transmission electron microscopy (TEM)
- Average size
  - Nanoparticle tracking analysis (NTA)
    (NTA; viewsizer300): 10 nm-2 μm
- Particle size distribution & concentration
  - NTA: 10 nm-2 μm
  - Single particle optical sizing (SPOS): 0.5-2500 µm

#### **Exposed surface change and recovery of the fragmented particles**

#### After sunlight exposure



- 1. Soaking the top surface in the 2 ml of solution (ultra pure water) in aluminum dish
- 2. Filter the solution with 0.8  $\mu$ m PC filter
- 3. Weighing the particles on 0.8  $\mu$ m filter



#### Qualitative analysis of the produced microplastics

#### **Micro-sized particles (>0.8 μm)**



#### Nile Red staining





#### Qualitative analysis of the produced micro- and nanoplastics: SEM-EDS

#### Microplastics (>0.8 μm)



1 µm

#### **Nanoplastics (<0.8 μm)**



#### Qualitative analysis of the produced micro- and nanoplastics: TEM

#### Microplastics (>0.8 μm)





- ✓ Size: 10-20 µm✓ Surface roughness:
  - Rz: 175 nm
  - Ra: 85 nm





#### **Produced microplastics and particle size distribution (>0.8 μm)**

#### Produced particles



#### Average size

| Sample | Average size (µm) |
|--------|-------------------|
| 3M     | 2.32              |
| 6M     | 2.32              |
| 7M     | 2.88              |
| 9M     | 2.20              |
| 12M    | 2.03              |
| 24M    | 2.78              |

- Approximately, 3.7x10<sup>6</sup>-6.7x10<sup>7</sup> particles/cm<sup>2</sup> were produced.
- Increasing particles by increasing exposure duration
- A comparable average size of fragmented particles

Song et al. (in preparation)

Micro ERA

14

#### Particle size distribution

#### Produced nanoplastics and particle size distribution (<0.8 $\mu$ m)

#### Produced particles



#### Average size

Particles/cm<sup>2</sup>

| Sample | Average size(nm) |
|--------|------------------|
| 3M     | 138              |
| 6M     | 145              |
| 7M     | 164              |
| 9M     | 159              |
| 12M    | 178              |
| 24M    | 189              |

- Approximately, 4x10<sup>7</sup>-5x10<sup>8</sup> particles/cm<sup>2</sup> were produced.
- Increasing particles by increasing exposure period
- A comparable average size of fragmented particles

Song et al. (in preparation)

#### Particle size distribution

#### **EPS vs rigid PS in nanoplastic production**

#### **EPS** (sunlight exposure) **vs rigid PS** (simulating sunlight exposure)



- Rigid PS: 3x5 cm sheet
- Suntest XLS+: Xenon lamp/Daylight filter, cut-on at approx. 295 nm
- Exposure duration: 2, 4, 6 and 8 months

Song et al. (in preparation)

Micro ERA

16

#### Mass balance of EPS exposed to sunlight

#### • Weight loss of EPS cube



Song et al. (in preparation)

Micro ERA

17

**Generated micro & nano particles** 

#### **Estimation of nano- and microplastic production rate**



#### - It requires approximately 3.5 years to lose 50% of EPS cube based on the estimated weathering rate.

- Approximately 2.6x10<sup>8</sup> particles/cm<sup>2</sup> can be produced for 1 year (4,998 Mj/cm<sup>2</sup>).
  - The estimated NMP production rate

**EPS cube weight of loss** 

- 2.2x10<sup>8</sup> particles/cm<sup>2</sup>·yr (0.13 μg/cm<sup>2</sup>·yr) for nanoplastics
- 4.2x10<sup>7</sup> particles/cm<sup>2</sup>·yr (670 μg/cm<sup>2</sup>·yr) for microplastics

#### Generation of nano- and microplastics from EPS exposed to sunlight

#### **Generated nano- and microplastics from the top surface area of EPS container**

- The estimated production rate
  - 2.2x10<sup>8</sup> particles/cm<sup>2</sup>·yr (0.13 μg/cm<sup>2</sup>·yr) for nanoplastics
  - 4.2x10<sup>7</sup> particles/cm<sup>2</sup>·yr (670 μg/cm<sup>2</sup>·yr) for microplastics



Song et al. (in preparation)

Micro ERA

19

#### Produced nanoplastics and particle size distribution (<0.8 µm)\_chamber

#### Particle size distribution



| Exposure<br>duration | Average size (nm) |     |  |
|----------------------|-------------------|-----|--|
|                      | LDPE              | РР  |  |
| 0M                   | 118               | 144 |  |
| 2M                   | 131               | 165 |  |
| 4M                   | 128               | 237 |  |
| 6M                   | 151               | 240 |  |
| 8M                   | 209               | 230 |  |

In real beach environment,

- Mechanical force (wind, wave, manual, etc.) could steeply increase fragmentation rate especially after certain level of photooxidation
- Exposure of sub-surface area after removal of the produced particles covering the surface may enhance further fragmentation process
- Shading effects (fouling, upside down, other objects, etc.) and cooling by wind may retard photooxidation and fragmentation process

- Rapid fragmentation occurred at the EPS surface exposed to sunlight.
  Months' sunlight exposure is enough to produce nano- and micro-sized particles from EPS
- Large amount of nano-sized EPS particles (< 0.8 μm) was produced by sunlight exposure, but their mass contribution was negligible to the micro-sized particles (> 0.8 μm)
- Foamed plastic structure is very vulnerable for fragmentation by both the UV exposure and (or) mechanical abrasion

#### **Further study**

- Combined effects of UV exposure and mechanical force (e.g. vortexing w/ water, tumbling w/o water, pressing etc.)
- Weathering of other common polymers (PE, PP and PET) to estimate NMP production rate
- Weathering of other foamed plastics (foamed PU, PP, and PE)
- Effects of various environmental conditions on weathering rate of plastics
- Development of a prediction model for production of secondary microplastics from residual macroplastic debris in the environments by photochemical oxidation

#### Acknowledgement



Ministry of Oceans and Fisheries

# Thank you for your attention!

wjshim@kiost.ac.kr