

Harmonized Analysis of Microplastics by FTIR Spectroscopy and Imaging

Sebastian Primpke et al. sebastian.primpke@awi.de

Fourier transform infrared (FTIR)

Fourier transform infrared (FTIR)

Fourier transform infrared (FTIR)

© CC 3.0 / The Photographer

© CC 3.0 / The Photographer

© CC 3.0 / The Photographer

HELMHOLTZ 3

Why FTIR for MP analysis?

Chemical imaging via a non destructive method.

Sample preparation compared to RAMAN microscopy is less demanding.

 Complete mapping of membrane filters is possible.

HELMHOLTZ 4

Particles > 500 µm

If the particles can be sorted by hand:

- Filtration onto filter meshes with 500 µm pore size
- Optical sorting of the particles
- Attenuated total reflection (ATR)-FTIR- measurement

Particles > 500 µm

If the particles can be sorted by hand:

Particles > 500 µm

If the particles can be sorted by hand:

Example – ATR-FTIR-spectroscopy

Towards Harmonization of Analysis

Single particles via attenuated total reflection (ATR) – FTIR: Reference database available via Open Access in Primpke, S. et. al., Analytical and Bioanalytical Chemistry 2018, 410, (21), 5131-5141

1. Primpke, S. et. al., Analytical and Bioanalytical Chemistry 2018, 410, (21), 5131-5141

HELMHOLTZ 7

Using the common Fouriertransform infrared (FTIR) spectroscopy

Allows the analysis of large filters (diameter usually 10 - 13 mm)

Applicable in transmission and reflection mode

Example: Sediment sample

FTIR Imaging

Chemical Imaging

Manual analysis based on false color images

> An easy task?

No

> An easy task?

An easy task?

An easy task?

An easy task?

 circa 60 seconds per particle

 Worst case 2-6 weeks per sample

Manual Analysis via FTIR Imaging

©W/

High expenditure of time:

- Manual selection of possible particles
- Manual library search
- Size determination of the particles limited

Overall the process is prone to human bias!

Additionally a high demand of personnel requirements

Manual Analysis via FTIR Imaging

High expenditure of time:

Manual selection of possible particles

Unsuitable for standardization of microplastic analysis

Additionally a high demand of personnel requirements

@\\//

Requirements for harmonization

- Low expenditure of time
- Impartial analysis
- > A minimum of personnel requirements
- Fast and reliable measurements

Requirements for harmonization

- Low expenditure of time
- Impartial analysis
- > A minimum of personnel requirements
- Fast and reliable measurements

Automated Analysis

Combination of two library searches with different data handling

- Correlation of the original spectrum with vector normalization
- Correlation with the 1st derivative of the original spectrum with vector normalization

Successfully automated data generation with a 3% error value

Transformation into images possible

1.

Image Analysis

Implementation of an analytical program based on Python and SimpleITK

Image Analysis

Implementation of an analytical program based on Python and SimpleITK

Allows determination of particle ¹ sizes

Resulting in high quality data within a short time

Sediment sample as example

And on larger scale

After Particle Analysis

Size distribution and polymer numbers accessible

Or even combined:

HELMHOLTZ 17

HELMHOLTZ 18

Towards Harmonization of Analysis

FTIR microscopy and imaging:

Automated analysis and reference database published via Open Access

polymer cluster

1. Primpke, S. et. al., Analytical and Bioanalytical Chemistry 2018, 410, (21), 5131-5141

- > Data analysis independent from human bias via automated analysis
- Identification and Quantification of MP already within this process
- Time saving due to parallelization
- ➢ High comparability of results!

© M

Standardization!

Treated waste water

Primpke et al., 2019, Analytical Methods

Automatization of microplastic analysis based on FTIR imaging

Snow

Bergmann et al., 2019, Science Advances

Microplastics in Snow

Identified Particles in Snow

Microplastics in Snow

Sizes of Microplastics in Snow

^{1.} Bergmann, M., Mützel, S. et al., Science Advances 5, eaax1157.

@AV/

Microfibers in Snow

Chemical analysis for fibers

> Problem:

Fibers are nearby never completely in the focal plane

> Solution:

Covering the sample with an IR suitable window

Chemical analysis for fibers

1. Primpke, S., et al., Analytical Methods, 2019. DOI: 10.1039/C9AY00126C

Particles

1. Primpke, S., et al., Analytical Methods, 2019. DOI: 10.1039/C9AY00126C

HELMHOLTZ 31

Fibers

1. Primpke, S., et al., Analytical Methods, 2019. DOI: 10.1039/C9AY00126C

Fibers in details

Fibers

- MP dominated most of the samples
- Cellulosic fibers dominated
- MP was removed by ~ 86% during filtration
- Synthectic MF was removed by ~ 89% during filtration
- Cellulosic MF was removed by ~ 78% during filtration

Towards Harmonization of Analysis

siMPle: Standardized Identification of MicroPLastics in the Environment

Systematic Identification of MicroPLastics in the Environment

Developed by Aalborg University, Denmark and Alfred Wegener Institute, Germany

Available on <u>www.simple-plastics.</u>eu

Towards Harmonization of Analysis

Available on www.simple-plastics.eu

Example: Analysis of Water Samples

HELMHOLTZ 37

Summary

- Low expenditure of time:
 - Data analysis time currently reduced from 24 hours to 6 hours by siMPLe for the automated analysis.
 - Depending on FTIR system 1 hours or less of manual labor per sample
- Impartial analysis
 - Evaluation within a fixed confidential interval
- Minimum of personnel requirements
 - One person can perform and analyze several samples in parallel
 - Data analysis can be parallelized
- Fast and reliable measurements
 - Measurement time 4 hours to 18 hours for the same region (14 × 14 mm) depending on lenses used.

- Low expenditure of time
- Impartial analysis
- Minimum of personnel requirements
- Fast and reliable measurements

Harmonization by automation of microplastic analysis based on FTIR imaging

Low expenditure of time

- Impartial analysis
- Minimum of personnel requirements
- Fast and reliable measurements

- Low expenditure of time
- Impartial analysis

- Minimum of personnel requirements
- Fast and reliable measurements

- Low expenditure of time
- Impartial analysis
- Minimum of personnel requirements
- Fast and reliable measurements

- Low expenditure of time
- Impartial analysis
- Minimum of personnel requirements
- Fast and reliable measurements

Acknowledgements

HELMHOLTZ

Gunnar Gerdts (Leader WG)

Antje Wichels (Co-leader WG)

Michaela Meyns (PostDoc)

Melanie Meyer (Researcher)

PhD students: Serena Abel, Lisa Roscher, Jessica Song, Nick Mackay-Roberts

Former PhD students: Claudia Lorenz, and Inga Kirstein Current Master students: Laura Stutzinger, Lorenz Reisel and Annika Fehres

Aalborg University, Denmark: Jes Vollertsen (Professor), Alvise Vianello (Postdoc), PhD students: Nikki van Alst, Márta Simon, Kristina B Olesen

Melanie Bergmann (AWI researcher, Deep Sea Ecology and Technology)

Mine Tekman (PhD Student, Deep Sea Ecology and Technology)

Ilka Peeken (AWI researcher, Polar Biological Oceanography)

Universität Bayreuth: Prof. Christian Laforsch Hannes Imhof, Sarah Phiel, Isabella Schrank and Martin Löder ,Julia Prume, Daniela Thomas, Lars Hildebrandt, Vanessa Wirzberger, Julia Guetermann, Birte Beyer, Mathilde Falcou-Préfol and Livia Cabernard Marisa Wirth (internship), Linn Speidel (former BS), Hilke Döpke (TA) and Hannah Jebens (TA)

NORCE, Norway: Marte Haave, Erlend Hodneland, Benny Svardal

Hochschule Bremerhaven/Frauenhofer MEVIS: Prof. Richard Rascher-Friesenhausen

Marquette University, USA: Philipe Ambrozio Dias

Universität Göttingen: Florian Ehlers

AWI and the German Federal Ministry of Education and Research (BMBF) for financial support (BASEMAN, grant 03F0734A)

Questions?

© Alfred Wegner Institut / Uwe Nettelmann

HELMHOLTZ