

# Utilizing clay minerals to remove atmospheric CO<sub>2</sub>

Mukul Sharma
Radiogenic Isotope Geochemistry Laboratory
Department of Earth Sciences, Dartmouth College, Hanover NH 03755 USA

- Clays can be customized and amended to deliver elements to the sea-surface (e.g., Si, Al, Fe, Mn, P,..)
- > Clays can help recruit the microbial circuit and the biological pump to remove atmospheric CO2
- > Depth of remineralization is expected to increase

## Natural dust circulating in the atmosphere is mainly made of clay minerals derived from soils





Ito & Wagai (2017) Nature

Transport of dust (red) from southern South America eastward over the Subantarctic Atlantic Ocean on Dec. 30, 2006. (William Putnam and Arlindo da Silva, NASA/Goddard Space Flight Center.

### Dust—climate couplings over the past 800,000 years from the EPICA Dome C ice core

F. Lambert<sup>1,2</sup>, B. Delmonte<sup>3</sup>, J. R. Petit<sup>4</sup>, M. Bigler<sup>1,5</sup>, P. R. Kaufmann<sup>1,2</sup>, M. A. Hutterli<sup>6</sup>, T. F. Stocker<sup>1,2</sup>, U. Ruth<sup>7</sup>, J. P. Steffensen<sup>5</sup> & V. Maggi<sup>3</sup>



- 25-fold increase in glacial dust flux over all eight glacial periods
- strengthening of South American dust sources, plus a longer lifetime for atmospheric dust particles in the upper troposphere resulting from a reduced hydrological cycle during the ice ages.



Jickells et al. (2005) Science

Barrett et al. (2012)



#### LIMNOLOGY and OCEANOGRAPHY



The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging potential of marine snow

Helga van der Jagt <sup>©</sup>, <sup>1,2</sup> Carmen Friese, <sup>2</sup> Jan-Berend W. Stuut <sup>©</sup>, <sup>2,3</sup> Gerhard Fischer, <sup>2,4</sup> Morten H. Iversen <sup>©</sup><sup>1,2</sup>\*



**Table 1.** Equivalent spherical diameter (ESD), number of formed aggregates per liter, total aggregated volume and sinking velocity for the high deposition, low deposition and scavenging experiments. Average ± SD.

| Experiment      |         | ESD<br>(mm)                       | Total agg.<br>(# L <sup>-1</sup> ) | Total agg. vol.<br>(mm³ L <sup>-1</sup> ) | Sinking velocity<br>(m d <sup>-1</sup> ) |
|-----------------|---------|-----------------------------------|------------------------------------|-------------------------------------------|------------------------------------------|
| High deposition | Control | $\textbf{0.52} \pm \textbf{0.30}$ | $5.04 \pm 3.71$                    | $0.79 \pm 0.48$                           | $133 \pm 108$                            |
|                 | Dust    | $0.62 \pm 0.51$                   | $16.87 \pm 9.21$                   | $8.98 \pm 3.11$                           | $430\pm280$                              |
| Low deposition  | Control | $1.45 \pm 0.78$                   | $4.35 \pm 2.84$                    | $3.43 \pm 4.47$                           | $42\pm23$                                |
|                 | Dust    | $0.75 \pm 0.61$                   | $23.04 \pm 6.60$                   | $71.88 \pm 22.81$                         | $109 \pm 42$                             |
| Scavenging      | Control | $1.29 \pm 0.85$                   | $6.09 \pm 3.14$                    | $17.10 \pm 5.64$                          | $319 \pm 210$                            |
|                 | Dust    | $1.40\pm0.80$                     | $5.51 \pm 3.05$                    | $17.21 \pm 6.81$                          | $403 \pm 280$                            |



Saharan dust particles "glued together" in marine snow. Total width of snow particle:  $800\mu m$ .

Image credits: Helga van der Jagt, AWI / MARUM, Germany

https://www.nioz.nl/en/blog/dust/ballasting-potential-of-saharan-dust



Carbon sequestration in the deep Atlantic enhanced by Saharan dust

Katsiaryna Pabortsava<sup>1\*</sup>, Richard S. Lampitt<sup>1</sup>, Jeff Benson<sup>1</sup>, Christian Crowe<sup>1</sup>, Robert McLachlan<sup>1</sup>, Frédéric A. C. Le Moigne<sup>2</sup>, C. Mark Moore<sup>3</sup>, Corinne Pebody<sup>1</sup>, Paul Provost<sup>1</sup>, Andrew P. Rees<sup>4</sup>, Gavin H. Tilstone<sup>4</sup> and E. Malcolm S. Woodward<sup>4</sup>

Dust deposition increases carbon sequestration in the North Atlantic through the fertilization of the N2-fixing community in surface waters and mineral ballasting of sinking particles



#### Iron Fertilization experiments

Direct addition of Fe(II)  $\rightarrow$  oxidation to Fe(III) in a few minutes  $\rightarrow$  FeL + ferrihydrite colloids

Fe: Biological Pump::\$:Economy

Addition of Fe overheats the biological pump.

Bounce in productivity

- → Changes in community structure
  Phosphate depletion → (Pseudonitzschia proliferation) → domoic acid
- → Extensive POC remineralization between 100m and 200 m
- → Slow release of bioavailable Fe (and other nutrients) accompanied by ballasting of carbon
- can be accomplished by clay minerals



#### Marine biological pump produces

- **≥** 25 Pg of atmospheric C yr¹ as DOM.
- > 5-12 Pg of atmospheric C yr<sup>-1</sup> as POM

More than 90% DOM and POC is oxidized back to CO<sub>2</sub> in the upper 1000m.

Increasing the depth where sinking particles are respired back to  $CO_2$  would result in increased ocean carbon sequestration (Kwon et al., 2009 Nature)

Buchan et al. (2017) Nat Microbiol

## Conversion of DOM to POM can be accomplished using clay minerals that also improve POM transport efficiency

#### Ballasting

$$Velocity = \frac{2}{9} \cdot \frac{g}{\mu} \cdot r^2 \left( \Delta \rho \right)$$

Increase in density → sinking velocity

Aggregation & increase in size → increase in sinking velocity

Protection of organic matter by clay minerals

Armstrong, 2002; Francois et al., 2002; Klass and Archer, 2002; and many other subsequent publications.

## Creation of a clay mineral–DOM polymer nanocomposite drives the DOM→POM reaction forward!!



Stay tuned..there is more come!