Utilizing clay minerals to remove atmospheric CO₂ Mukul Sharma Radiogenic Isotope Geochemistry Laboratory Department of Earth Sciences, Dartmouth College, Hanover NH 03755 USA - Clays can be customized and amended to deliver elements to the sea-surface (e.g., Si, Al, Fe, Mn, P,..) - > Clays can help recruit the microbial circuit and the biological pump to remove atmospheric CO2 - > Depth of remineralization is expected to increase ## Natural dust circulating in the atmosphere is mainly made of clay minerals derived from soils Ito & Wagai (2017) Nature Transport of dust (red) from southern South America eastward over the Subantarctic Atlantic Ocean on Dec. 30, 2006. (William Putnam and Arlindo da Silva, NASA/Goddard Space Flight Center. ### Dust—climate couplings over the past 800,000 years from the EPICA Dome C ice core F. Lambert^{1,2}, B. Delmonte³, J. R. Petit⁴, M. Bigler^{1,5}, P. R. Kaufmann^{1,2}, M. A. Hutterli⁶, T. F. Stocker^{1,2}, U. Ruth⁷, J. P. Steffensen⁵ & V. Maggi³ - 25-fold increase in glacial dust flux over all eight glacial periods - strengthening of South American dust sources, plus a longer lifetime for atmospheric dust particles in the upper troposphere resulting from a reduced hydrological cycle during the ice ages. Jickells et al. (2005) Science Barrett et al. (2012) #### LIMNOLOGY and OCEANOGRAPHY The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging potential of marine snow Helga van der Jagt [©], ^{1,2} Carmen Friese, ² Jan-Berend W. Stuut [©], ^{2,3} Gerhard Fischer, ^{2,4} Morten H. Iversen [©]^{1,2}* **Table 1.** Equivalent spherical diameter (ESD), number of formed aggregates per liter, total aggregated volume and sinking velocity for the high deposition, low deposition and scavenging experiments. Average ± SD. | Experiment | | ESD
(mm) | Total agg.
(# L ⁻¹) | Total agg. vol.
(mm³ L ⁻¹) | Sinking velocity
(m d ⁻¹) | |-----------------|---------|-----------------------------------|------------------------------------|---|--| | High deposition | Control | $\textbf{0.52} \pm \textbf{0.30}$ | 5.04 ± 3.71 | 0.79 ± 0.48 | 133 ± 108 | | | Dust | 0.62 ± 0.51 | 16.87 ± 9.21 | 8.98 ± 3.11 | 430 ± 280 | | Low deposition | Control | 1.45 ± 0.78 | 4.35 ± 2.84 | 3.43 ± 4.47 | 42 ± 23 | | | Dust | 0.75 ± 0.61 | 23.04 ± 6.60 | 71.88 ± 22.81 | 109 ± 42 | | Scavenging | Control | 1.29 ± 0.85 | 6.09 ± 3.14 | 17.10 ± 5.64 | 319 ± 210 | | | Dust | 1.40 ± 0.80 | 5.51 ± 3.05 | 17.21 ± 6.81 | 403 ± 280 | Saharan dust particles "glued together" in marine snow. Total width of snow particle: $800\mu m$. Image credits: Helga van der Jagt, AWI / MARUM, Germany https://www.nioz.nl/en/blog/dust/ballasting-potential-of-saharan-dust Carbon sequestration in the deep Atlantic enhanced by Saharan dust Katsiaryna Pabortsava^{1*}, Richard S. Lampitt¹, Jeff Benson¹, Christian Crowe¹, Robert McLachlan¹, Frédéric A. C. Le Moigne², C. Mark Moore³, Corinne Pebody¹, Paul Provost¹, Andrew P. Rees⁴, Gavin H. Tilstone⁴ and E. Malcolm S. Woodward⁴ Dust deposition increases carbon sequestration in the North Atlantic through the fertilization of the N2-fixing community in surface waters and mineral ballasting of sinking particles #### Iron Fertilization experiments Direct addition of Fe(II) \rightarrow oxidation to Fe(III) in a few minutes \rightarrow FeL + ferrihydrite colloids Fe: Biological Pump::\$:Economy Addition of Fe overheats the biological pump. Bounce in productivity - → Changes in community structure Phosphate depletion → (Pseudonitzschia proliferation) → domoic acid - → Extensive POC remineralization between 100m and 200 m - → Slow release of bioavailable Fe (and other nutrients) accompanied by ballasting of carbon - can be accomplished by clay minerals #### Marine biological pump produces - **≥** 25 Pg of atmospheric C yr¹ as DOM. - > 5-12 Pg of atmospheric C yr⁻¹ as POM More than 90% DOM and POC is oxidized back to CO₂ in the upper 1000m. Increasing the depth where sinking particles are respired back to CO_2 would result in increased ocean carbon sequestration (Kwon et al., 2009 Nature) Buchan et al. (2017) Nat Microbiol ## Conversion of DOM to POM can be accomplished using clay minerals that also improve POM transport efficiency #### Ballasting $$Velocity = \frac{2}{9} \cdot \frac{g}{\mu} \cdot r^2 \left(\Delta \rho \right)$$ Increase in density → sinking velocity Aggregation & increase in size → increase in sinking velocity Protection of organic matter by clay minerals Armstrong, 2002; Francois et al., 2002; Klass and Archer, 2002; and many other subsequent publications. ## Creation of a clay mineral–DOM polymer nanocomposite drives the DOM→POM reaction forward!! Stay tuned..there is more come!