Exploring Ocean Iron Solutions- fieldwork planning workshop report out May 29-31 at WHOI

Participants Small invited group

Note that participants contributed to ideas to draft an implementation plan as outlined in Paths Forward report and are <u>**not**</u> necessarily PI's for eventual fieldwork

In-person: K. Buesseler, F. Chai, J. Cullen, M. Estapa, M. Honda, D. McGillicuddy, P. Morris, M. Omand, D. Siegel, S. Smith, Y. Takeshita, B. Twining, M. Wells, A. White

Remote: P. Boyd, S. John, J. Nishioka

Funding from the Astera Institute for travel/logistics and WHOI for the meeting facilities

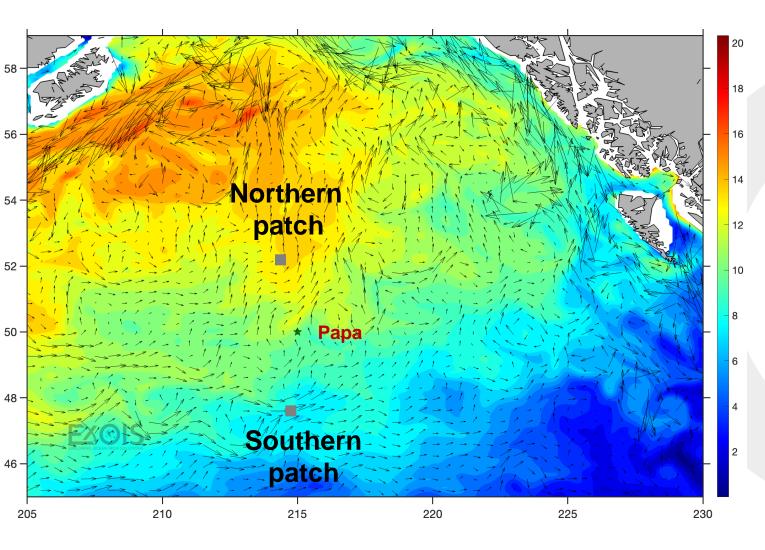
ExOIS field planning workshop

Workshop objective

To develop a structure for what the first fieldwork deployment will look like, and to formulate a roadmap and work plan for launching a series of pilot studies, under different levels of funding.

ExOIS overall objective

To conduct research to evaluate if OIF is an efficient and responsible approach to reducing atmospheric CO_2 . <u>And if so</u>, provide research results that enable society to conduct OIF at scale.


ExOIS overall aim (outcome)

To provide an open-source description of the protocols that would be needed for the implementation of at-scale OIF implementation

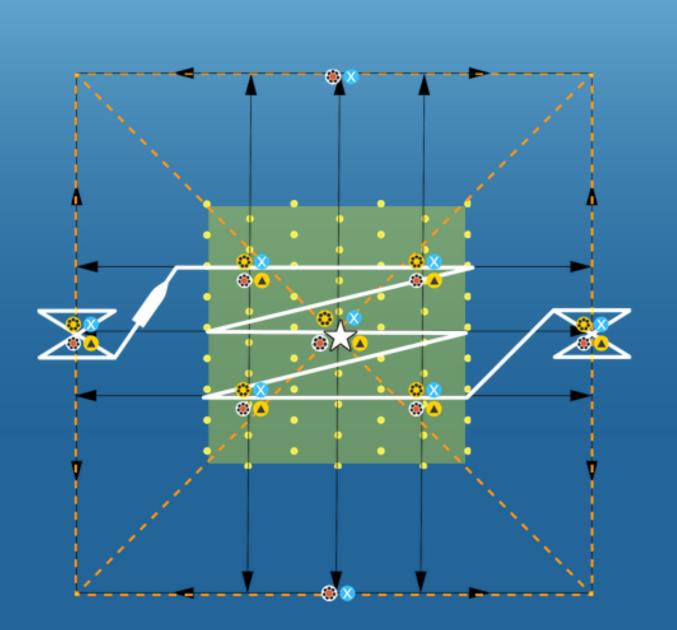
Priorities for first field experiment in the NE Pacific (set ahead of workshop)

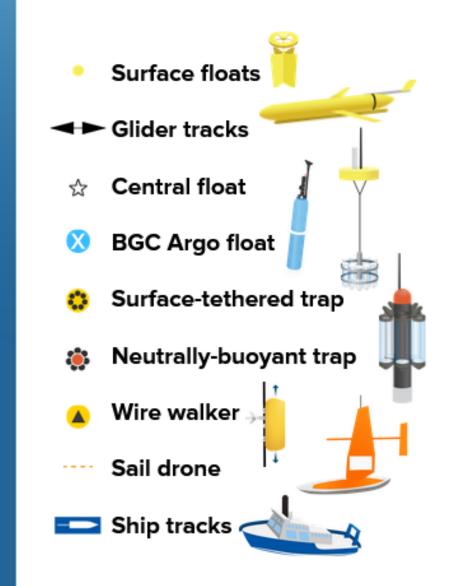
- ✓ Create and track a coherent and large bloom
- Track export and fate of the additional particulate C to at least 100 yr (500 m) scales, and over months/season
- ✓ Assess surface DIC drawdown with observations and track with models air/sea exchange
- ✓ Document ecosystem and environmental impacts (eMRV)
- ✓ Use the observations made during the field experiment to assess MRV technologies and to develop and validate MRV model
- Use the field data (obs and models) to assess scalability, costs, and with models, regional and climate impacts
- Learn from the field study to design future studies to maximize mCDR potential, evaluate variability and reduce costs at this site and other regions

ROMS – CoSINE Mean NO₃ (0-50 m) and mean current in July

Experiment setups:

Season


- Starting from July 1
- Continuous release for 10 days


Size

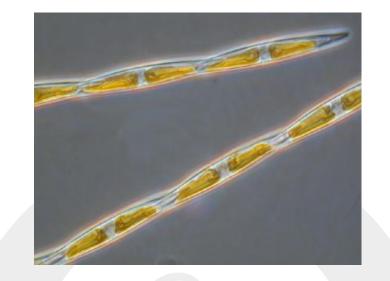
- Four cases: 10 km x 10 km, 30 km x 30 km, 50 km x 50 km, 100 km x 100 km
- Add Fe to the upper 5 meters
- both south & north of station Papa

Iron amount

- Total 25 ton of FeSo4 7H2O (about 5 t of Fe) for the 50km patch, (~daily added Fe concentration would be 0.72 nM/day; constant injection flux)
- Total 1 ton of FeSo4 7H2O (about 0.2 t of Fe) for the 10km patch, (~daily added Fe concentration would be 0.72 nM/day; constant injection flux)

Discussion today on **selected** workshop topics

- 1. Modeling in support of field trials
- 2. Core measurements/parameters (general and particle fate)- Ben Twining
- 3. Observations for eMRV
- 4. Go/no-go criteria- Sarah Smith
- 5. International collaborations- Paul Morris
- 6. Patch tracking and field plan (including Fe delivery)
- 7. Resources needed
- 8. Next steps to action


Core measurements/parameters

Some key questions/ideas that were considered:

- Key measurements that were integral in past studies
- Is an overall carbon budget / characterization of carbon fluxes that don't reach the "100-year horizon" necessary? No. Focus on gravitational and migrant fluxes
- Need to measure fate of trace metals, as well as carbon (& N, P, bSi)
- Coarse prioritization of parameters and methods
 - Priority 1 = Minimum viable plan measurements needed to achieve project priorities 1,2,3
 - Priority 2 = Needed to develop models and predictions beyond the direct observation (all project priorities)
 - Priority 3 = Would be nice (for scientific completeness)

List of eMRV concerns

- 1. Harmful algal blooms (Domoic Acid production)
- 2. Hypoxia (or "deoxygenation")
- 3. Nutrient Robbing/Redistribution
- 4. Generalised concern about impact on fisheries
- 5. Impacts on higher trophic levels, including things like:
 - a. Food web restructuring (changes to all biota inc. pelagic ocean microbiome)
 - b. Impacts on whales and birds
 - c. Benthic communities
- 6. Greenhouse gases produced in the water column and emitted to the atmosphere (N2O, CH4), and production of other climaterelevant gases like DMS

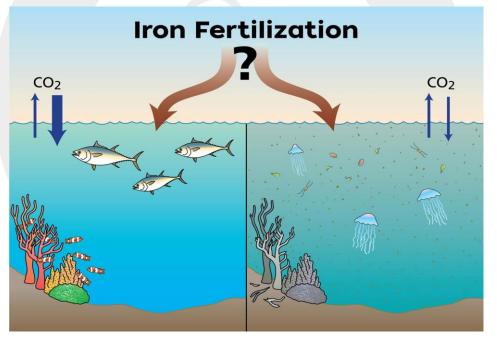
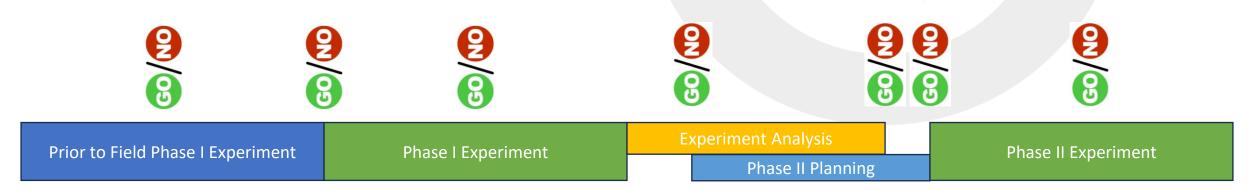


Illustration by Jack Cook, ©Woods Hole Oceanographic Institution

Group	Parameter	Method	Platform
			depth
SHIP-B	ASED		
A	T,S,Chl F, O2, NO3, BBP, PAR	Ship's underway mounted se	shipUW
A	Fv/Fm indication of physiology	FV/FM underway	shipUW
A	Particle absorption and attenuation - acs	absorption/attenuation/backs	shipUW
A	Plankton Imaging (pico-nano) underway	plankton imaging (PSD, ID, a shipUW	
A	pCO2	pCO2	shipUW
A,C	T,S,Chl F, O2, NO3, BBP, PAR	Rosette mounted sensors, C	ship
A-B	Large particle PSD & Plankton Imaging (Phyto-Zoo)	UVP	ship
С	N2O gas	Rosette Niskin	ship
A,C	Nutrients (NO3, NO2, SiON, PO4)	water samples	ship
A-B	Iron (dissolved and particulate)	TMC rosette	ship
A-C	Particle concentration (Chl, POC, PON, PIC, bSi, POP)	Bottle filter	ship
A, C	Pigment suites - Chl	water samples	ship
A	Carbonate system	water samples (pH, DIC, TA)	
A	Physics- Currents	ADCP	ship
В	Sinking and migrant POC fluxes	234Th	ship
С	Particulate Domoic Acid PP	ELISA	ship
С	eDNA - community composition	Particulate DNA/RNA Filters	ship
AUTON	IOMOUS PLATFORMS SUPPORTED BY SHIP DURING	GCRUISE	
A	Lagrangian Following Drifters	patch COM location, dispersid rifters	
В	Gravitational C, N, P flux and remineralization profiles	trap	drift moorin
В	Sinking particle characteristics	gel trap	drift moorin
В	Gravitational C, N, P flux and remineralization profiles	trap	autonomo
AUTON	IOMOUS PLATFORMS DEPLOYED BEYOND CRUISE		
A-B	Glider: T,S,F,O2,BBP, PAR, currents	Glider mounted sensors, calit glider	
A	Glider: NO3	Glider mounted sensors, calit glider	
A-C	Floats + remin fluxes: T,S,F,O2, NO3, BBP, PAR, pH	Variety of sensors	float
A	waveglider sensors	pCO2	waveglider
MULTI	PLE PLATFORMS		
A	Air-sea fluxes	meteorological obs	multiple
SATEL	LITE REMOTE SENSING		
A	SSH, geostrophic velocity, FTLEs	merged altimetry	satellite
A	Chl, BBP, PhytoGroups, Fluor	Ocean color	satellite
		Infrared	satellite
A	SST	IIIIaieu	satemite

Core measurements/parameters MRV and eMRV


"Minimum viable plan 1" (=priority 1)

- Platforms required: ships, ship-supported autonomous platforms, long-lived autonomous platforms, and satellites
- Many measurements spanned multiple discussion areas

Go/No-go criteria

- Project "Go/No-Go" points come out of lexicon used by some funding agencies (DOE for example) and can represent points early on in project funding, and at the mid-way for project funding
 - Designating situation in which one must decide whether or not to continue with a particular course of action, or the moment when such a decision must be made.
- Go/No-Go criteria considered for ExOIS pilot experiments and whether one recommends future OIF work broadly
 - What are the go/no-go criteria for the experiment
 - What are the go/no-go criteria to move to Phase II

Some Go/No-Go Considerations Identified

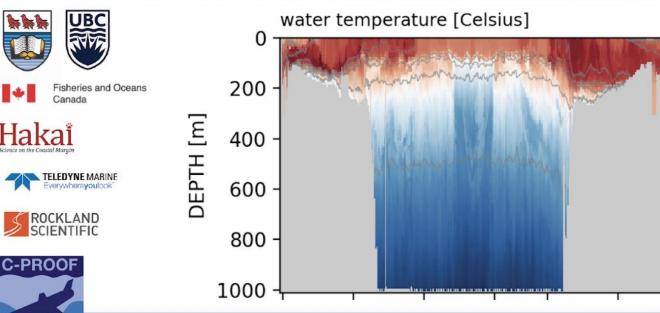
Milestones that we define for ourselves in advance of fieldwork

- Environmental Harm (EPA CDR thresholds exceeded no-go)
 - Domoic acid thresholds exceeded
 - Toxic heavy metal thresholds (if trace metals other than Fe used to track patch, or if contaminants are present)
 - GHG production
 - Oxygen depletion
- Lack of social license established (?)
 - Requirement for public input and engagement before, in between, and after experiments working towards social license through open sharing of outcomes
- Development of an Open Data Policy
- Require standards of success (clearly define what a successful experiment would look like)
 - Measured, additional export quantified to a satisfactorily constrained level of confidence
 - Minimized ecological harm
 - Life-cycle assessment of the technology at scale (hard) vs. the C footprint of the pilot experiment (more tractable)

International collaboration

- Formalizing international collaborators
 - USA, Canada, Japan, China, Europe, Australia/NZ.....
 - International collaboration for science sampling platforms (ships, gliders, floats etc.)

Some examples of ship plans for NE Pacific 2026


- Japan: Jun Nishioka, M. Honda- proposal submitted for use of R/V Hakuho-Maru in 2026-2028. Kazutaka Takahasi (biological oceanographer lead The Univ. Tokyo). First priority July-Aug 2026
- China: Fei Chai, M. Dai- R/V Tan Kah Kee Xiamen University, China, ship time funds needed, personnel would be available
- US: submit UNOLS ship time request?

Canada: CCGS Tully, Dept of Fisheries and Ocean run a program with 3 trips per year (Feb, May, Sept) of roughly 16 days each. Scheduling happens in March/April each year

- CCGS Sir Wilfrid Laurier, Great circle Vancouver to Dutch Harbor, north in July and south in October

C-PROOF: Canadian-Pacific Robotic Ocean Observing Facility

- Essential Data:
 - 12 Gliders and >20 Floats: temperature, salinity, oxygen, chlorophyll.
 - Goals: Improved weather and seasonal forecasting, ecosystem health
- Big Data:
 - 58 glider missions since 2019
 - 56,854 km; 62,463 CTD casts; 1782 glider days at sea
- 7.5 Open Data:

5.0

- Realtime locally: <u>https://cproof.uvic.ca</u>
- Internationally: Global Telemetry System; International Ocean Observing System; Coriolis Operational Oceanography (EGU)

International collaboration

- What programs are we missing?
- Who else should ExOIS be talking to?
- Ships of opportunity