Bibliography
Search by
Keyword Search
Author
Topics
Date
Atmospheric Transport of Iron
Baker, A. R., Jickells, T.D., Witt, M., Linge, K.L. (2006). Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean.
Marine Chem. 98, 43-58.
Baker, A. R., Kelly, S.D., Biswas, K.F., Witt, M., Jickells, T.D. (2003). Atmospheric deposition of nutrients to the Atlantic Ocean.
Geophys. Res. Lett. 30, doi:10.1029/2003GL018518.
Bonnet, S., Guieu, C. (2004). Dissolution of atmospheric iron in seawater.
Geophys. Res. Lett. 31, doi:10.1029/2003GL018423.
Bopp, L., Kohfeld, K. E., Le Quéré, C., Aumont, O. (2003). Dust impact on marine biota and atmospheric CO2 during glacial periods.
Paleoceanography 18, doi:10.1029/2002PA000810.
Duce, R. A., Tindale, N. W. (1991). Atmospheric transport of iron and its deposition in the ocean.
Limnol. Oceanogr. 36,1715-1726.
Edwards, R., Sedwick, P. (2001). Iron in East Antarctic snow: Implications for atmospheric iron deposition and algal production in Antarctic waters.
Geophys. Res. Lett. 28, 3907-3910.
Emerson, D. (2019). Biogenic Iron Dust: A Novel Approach to Ocean Iron Fertilization as a Means of Large Scale Removal of Carbon Dioxide From the Atmosphere
Frontiers in Marine Science, 6.
Erickson, D. J., Hernandez, J.L., Ginoux, P., Gregg, W.W., McClain, C., Christian, C.. (2002). Atmospheric iron delivery and surface ocean biological activity in the Southern Ocean and Patagonian region
Geophysical Research Letters, 30:12, 1609.
Gao, Y., Fan, S.-M., Sarmiento, J. L. (2003). Aeolian iron input to the ocean through precipitation scavenging: A modeling perspective and its implication for natural iron fertilization in the ocean.
J. Geophys. Res. 108, doi:10.1029/2002JD002420.
Hamilton, D.S., Baker, A.R., Iwamoto, Y., Gasso, S., Bergas-Masso, E., Deytch, S., Dinaquet, J., Kondo, Y., Llort, J., Myriokefalitakis, S., Perron, M.M.G., Wegmann, A., Yoon, J.-E. (2023). An aerosol odyssey: Navigating nutrient flux changes to marine ecosystems
Elementa, 11(1), 00037.
Jickells, T. D. et al. (2005). Global iron connections between desert, dust, ocean biogeochemistry, and climate.
Science 308, 67-71.
Johnson, K. S. et al. (2003). Surface ocean-lower atmosphere interactions in the Northeast Pacific Ocean Gyre: Aerosols, iron, and the ecosystem response.
Global Biogeochemical Cycles 17:16.
Lunt, D. J., Valdes, P. J. (2002). Dust deposition and provenance at the Last Glacial Maximum and present day.
Geophys. Res. Lett. 29, doi:10.1029/2002GL015656.
Meskhidze, N., Chameides, W. L., Nenes, A. (2005). Dust and pollution: A recipe for enhanced ocean fertilization?
J. Geophys. Res. 110, doi:10.1029/2004JD005082.
Neuer, S., M.E. Torres-Padrón, M.D. Gelado-Caballero, M.J. Rueda, J. Hernández-Brito, R. Davenport, G. Wefer (2004). Dust deposition pulses to the eastern subtropical North Atlantic gyre: Does ocean’s biogeochemistry respond?
Glob. Biogeochem. Cycles 18, doi:10.1029/2004GB002228.
Sarthou, G. et al. (2003). Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean.
Deep-Sea Res I 50, 1339-1352.
Carbon Credits
Boyd, P.W., Bach, L., Holden, R., Turney, C. (2023). Redesign carbon-removal offsets to help the planet
Nature, 620, 947-949.
Chisholm, S. W., Falkowski, P. G., Cullen, J. J. (2001). Dis-crediting ocean fertilization.
Science 294, 309-310.
Johnson, K. S., Karl, D. M. (2002). Is ocean fertilization credible or creditable?
Science 296, 467-468.
Rickels, W., Rehdanz, K., Oschlies, A. (2012). Economic prospects of ocean iron fertilization in an international carbon market
Resource and Energy Economics, 34, 129-150.
Climate Mitigation
Babakhani, P., Phenrat, T., Baalousha, M., Soratana, K., Peacock, C.L., Twining, B.S., Hochella Jr., M.F. (2022). Potential use of engineered nanoparticles in ocean fertilization for large-scale atmospheric carbon dioxide removal
Nature Nanotechnology, DOI: 10.1038/s41565-022-01226-w
Bach L.T., D.T. Ho, P.W. Boyd, M.D. Tyka (2023). Toward a consensus framework to evaluate air–sea CO2 equilibration for marine CO2 removal
Limnology and Oceanography Letters, 8(5), 685–691
Bach, L.T., Boyd, P.W. (2021). Seeking natural analogs to fast-forward the assessment of marine CO2 removal
PNAS Perspective, 118(40), e2106147118.
Buesseler, K., Chai, F., Karl, D., Ramakrishna, K., Satterfield, T., Siegel, D., Smith, S., Webb R., Wells, M., Yoon, J-E., ExOIS Group (2022). Ocean iron fertilization: assessing its potential as a climate solution
Exploring Ocean Iron Solutions Group
Buesseler, K., Leinen, M., Ramakrishna, K. (2022). Removing carbon dioxide: first, do not harm
Nature Correspondence, 606, 864.
Charette, M. A., Buesseler, K. O. (2000). Does iron fertilization lead to rapid carbon export in the Southern Ocean?
Geochem. Geophys., Geosys. 1, 2000GC000069.
De Pryck, K. and Boettcher, M. (2024). The rise, fall and rebirth of ocean carbon sequestration as a climate 'solution'
Global Environmental Change, 85, 102820.
El Semary, N.A (2022). Iron-marine algal interactions and impacts: Decreasing global warming by increasing algal biomass
Sustainability, 14(16), 10372.
Fuhrman, J., C. Bergero, M. Weber, S. Monteith, F.M. Wang, A.F. Clarens, S.C. Doney, W. Shobe, and H. McJeon (2023). Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system
Nature Climate Change, 13, 341–350
Gattuso, J-P., Magnan, A.K., Bopp, L., Cheung, W.W.L., Duarte, C.M., Hinkel, J., Mcleod, E., Micheli, F., Oschlies, A., Williamson, P., Billé, R., Chalastani, V.I., Gates, R.D., Irisson, J-O., Middelburg, J.J., Pörtner, H-O., Rau, G.H. (2018). Ocean solutions to address climate change and its effects on marine ecosystems
Frontiers in Marine Science
Henson, S., Baker, C.A., Halloran, P., McQuatters-Gollop, A., Painter, S., Planchat, A., Tagliabue, A. (2024). Knowledge gaps in quantifying the climate change response of biological storage of carbon in the ocean
Earth's Future, 12:6, e2023EF004375
Hutchins, D.A., Boyd, P.W. (2016). Marine phytoplankton and the changing ocean iron cycle
Nature Climate Change, 6, 1072-1079.
Martinez-Garcia, A. et al. (2014). Iron fertilization of the Subantarctic Ocean during the Last Ice Age
Science 343, 1347-1350, DOI: 10.1126/science.1246848
Mayo-Ramsay, J P (2008). Taking a precautionary approach to climate mitigation measures in the Southern Ocean
Antarctic & Southern Ocean Law & Policy Occasional Papers 12, 33-53.
Moore, J. K. et al. (2000). The Southern Ocean at the last glacial maximum: A strong sink for atmospheric carbon dioxide
Glob. Biogeochem. Cycles 14, 455-475
Nawaz, S. and Lezaun, J. (2024). Grappling with a sea change: Tensions in expert imaginaries of marine carbon dioxide removal
Global Environmental Change, 85, 102806.
Palter, J. B., J. Cross, M. C. Long, P. A. Rafter, and C. E. Reimers (2023). The science we need to assess marine carbon dioxide removal
Eos, 104
Peng, T-H., Broecker, W. S. (1991). Factors limiting the reduction of atmospheric CO2 by iron fertilization.
Limnol. Oceanogr. 36,1919-1927.
Ridgwell, A. J. (2000). Climatic effect of Southern Ocean Fe fertilization: Is the jury still out?
Geochem. Geophys., Geosys. 1, 2000GC000120
Watson, A. J., Naveira Garabato, A. C. (2005). The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change.
Tellus B 58, 73-87.
Experiments – Equatorial Pacific (IronEx I & II)
(1998). Special Volume: Deep-Sea Research II 45, Issue 6
pp. 915-1150 (1998).
Armstrong, R. A. (2003). A hybrid spectral representation of phytoplankton growth and zooplankton response: The “control rod” model of plankton interaction.
Deep-Sea Research II 50, 2895-2916.
Bidigare, R. R. et al. (1999). Iron-stimulated changes in 13C fractionation and export by equatorial Pacific phytoplankton: Toward a paleogrowth rate proxy.
Paleoceanography 14, 589-595.
Cavender-Bares, K. K. et al. (1999). Differential response of equatorial Pacific phytoplankton to iron fertilization.
Limnol. Oceanogr. 44, 237-246.
Cochlan, W. P. (2001). The heterotrophic bacterial response during a mesoscale iron enrichment experiment (IronEx II) in the eastern equatorial Pacific Ocean.
Limnol. Oceanogr. 46, 428-435.
Cullen, J. J. (1995). Status of the iron hypothesis after the Open-Ocean Enrichment Experiment.
Limnol. Oceanogr. 40(7), 1336-1343.
Erdner, D. L., Anderson, D. M. (1999). Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment.
Limnol. Oceanogr. 44, 1609-1615.
Landry, M. R., Kirchman, D. L. (2002). Microbial community structure and variability in the tropical Pacific.
Deep-Sea Res. II 49, 2669-2693.
Mann, E. L., Chisholm, S. W. (2000). Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific.
Limnol. Oceanogr. 45, 1067-1076.
Martin, J.H., Coale, K.H., Johnson, K.S. et al. (1994). Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean
Nature, 371, 123-129.
Rollwagen Bollens, G. C., Landry, M. R. (2000). Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II).
II. Mesozooplankton abundance, biomass, depth distribution and grazing. Mar. Ecol. Prog. Ser. 201, 43-56.
Rue, E. L., Bruland, K. W. (1997). The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment.
Limnol. Oceanogr. 42, 901-910.
Experiments – General
Boyd, P.W., D.C.E. Bakker, and C. Chandler. (2012). A new database to explore the findings from large-scale ocean iron enrichment experiments.
Oceanography 25(4):64–71
Buesseler, K.O., Bianchi, D., Chai, F., Cullen, J.T., Estapa, M., Hawco, N., John, S., McGillicuddy, D.J., Morris, P.J., Nawaz, S., Nishioka, J., Pham, A., Ramakrishna, R., Siegel, D.A., Smith, S.R., Steinberg, D., Turk-Kubo, K.A., Twining, B.J., Webb, R.M, Wells, M., White, A., Xiu, P., Yoon, J.-E. (2024). Next steps for assessing ocean iron fertilization for marine carbon dioxide removal
Coale, K.H., Wong, M. (2019). Ocean Iron Fertilization
in Encyclopedia of Ocean Sciences (3nd Ed), JH Steel (ed), Academic Press, pp 429-446.
Emerson, D., Sofen, L.E., Michaud, A.B., Archer, S.D., Twining, B.S. (2024). A Cost Model for Ocean Iron Fertilization as a Means of Carbon Dioxide Removal That Compares Ship- and Aerial-Based Delivery, and Estimates Verification Costs
Earth’s Future, 12, e2023EF003732.
Kim, T.-J. (2020). Appropriate location and deployment method for successful iron fertilization
Open Journal of Marine Science, 10, 149-172.
Watson, A., Liss, P., Duce, R. (1991). Design of a small-scale in situ iron fertilization experiment.
Limnol. Oceanogr. 36,1960-1965.
Watson, A.J., Boyd, P. W., Turner, S., Jickells, T. D., Liss, P. (2008). Designing the next generation of ocean iron fertilization experiments.
Mar. Ecol. Prog. Ser. 364, 303–309.
Experiments – North Pacific (SEEDS I, II & SERIES)
(2009). Special Volume: Deep-Sea Research II 56:26
pp. 2731-2958
Boyd, P. W. et al. (2005). The evolution and termination of iron-induced mesoscale bloom in the northeast subarctic Pacific.
Limnol. Oceanogr. 50, 1872-1886.
Boyd, P. W. et al. (2004). The decline and fate of an iron-induced subarctic phytoplankton bloom.
Nature 428, 549-553.
Law, C. S. et al. (2006). Patch evolution and the biogeochemical impact of entrainment during an iron fertilisation experiment in the sub-Arctic Pacific.
Deep-Sea Res. II 53, 2012-2033.
Nishioka, J. et al. (2003). Size-fractionated iron distributions and iron-limitation processes in the subarctic NW Pacific.
Geophys. Res. Lett. 30, doi:10.1029/2002GL016853.
Tsuda, A. (Ed.) (2005). Special Volume: Results from the Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS)
Prog. Oceanogr. 64, Issues 2-4, pp. 91-324
Experiments – Southern Ocean
Arrieta, J. M. et al. (2004). Response of bacterioplankton to iron fertilization in the Southern Ocean.
Limnol. Oceanogr. 49, 799-808.
Bakker, D. C. E. et al. (2005). Iron and mixing affect biological carbon uptake in SOIREE and EisenEx, two Southern Ocean iron fertilisation experiments
Deep-Sea Research I 52, 1001–1019.
Bishop, J. K. B. et al. (2004). Robotic observations of enhanced carbon biomass and export at 55°S during SOFeX.
Science 304, 417-420.
Blain, S. et al. (2007). Effect of natural iron fertilization on carbon sequestration in the Southern Ocean
Nature 446, 1070-1074.
Blain, S., Queguiner, B., Trull, T. (2008). The natural iron fertilization experiment KEOPS (KErguelen Ocean and Plateau compared Study): An overview.
Deep-Sea Res. II 55, 559-565.
Boyd, P. W. (2002). The role of iron in the biogeochemistry of the Southern Ocean and equatorial Pacific: a comparison of in situ iron enrichments.
Deep-Sea Res. II 49, 1803-1821.
Boyd, P. W. (2004). Ironing out algal issues in the Southern Ocean.
Science 304, 396-397.
Boyd, P. W., Jackson, G. A., Waite, A. M. (2002). Are mesoscale perturbation experiments in polar waters prone to physical artefacts? Evidence from algal aggregation modelling studies.
Geophys. Res. Lett. 29, 10.1029/2001GL014210.
Boyd, P. W., Watson, A.J., Law, C.S., et al. (2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization.
Nature 407, 695-702.
Bozec, Y. et al. (2005). The CO2 system in a Redfield context during an iron enrichment experiment in the Southern Ocean.
Marine Chem. 95, 89-105.
Buesseler, K. O. et al. (2005). Particle export during the Southern Ocean Iron Experiment (SOFeX).
Limnol. Oceanogr. 50, 311-327.
Buesseler, K. O., Boyd, P. W. (2003). Will Ocean Fertilization Work?
Science 300, 67-68.
Buesseler, K.O. et al. (2004). The effects of iron fertilization on carbon sequestration in the Southern Ocean.
Science 304, 414-417.
Cassar, N., Laws, E. A., Bidigare, R. R. (2004). Biocarbonate uptake by Southern Ocean phytoplankton.
Global Biogeochem. Cycles 18, doi:10.1029/2003GB002116.
Charette, M. A., Buesseler, K. O. (2000). Does iron fertilization lead to rapid carbon export in the Southern Ocean?
Geochem. Geophys., Geosys. 1, 2000GC000069.
Chisholm, S. W. (2000). Stirring times in the Southern Ocean.
Nature 407, 685-687.
Croot, P. L. et al. (2001). Retention of dissolved iron and Fe(II) in an iron induced Southern Ocean phytoplankton bloom.
Geophys. Res. Lett. 28, 3425-3428.
Croot, P. L. et al. (2005). Spatial and temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mesoscale iron enrichment experiment.
Marine Chem. 95, 65-88.
Ellwood, M.J., Strzepek, R.F., Strutton, P.G., Trull, T.W., Fourquez, M., Boyd, P.W. (2020). Distinct iron cycling in a Southern Ocean eddy
Nature Communications, 11, 825
Hiscock, W. T., Millero, F. J. (2005). Nutrient and carbon parameters during the Southern Ocean Iron Experiment (SOFeX).
Deep-Sea Res. I 52, 2086-2108.
Jackson, G. A., Waite, A. M., Boyd, P. W. (2005). Role of algal aggregation in vertical carbon export during SOIREE and in other low biomass environments.
Geophys. Res. Lett. 32, doi:10.1029/2005GL023180.
Karsh, K. L. et al. (2003). Relationship of nitrogen isotope fractionation to phytoplankton size and iron availability during the Southern Ocean Iron RElease Experiment (SOIREE).
Limnol. Oceanogr. 48, 1058-1068.
Law, C. S. et al. (2003). Vertical eddy diffusion and nutrient supply to the surface mixed layer of the Antarctic Circumpolar Current.
J. Geophys. Res. 108, doi:10.1029/2002JC001604.
Law, C. S., Boyd, P. W., Watson, A. J. (Eds.) (2001). Special Volume: The Southern Ocean Iron Release Experiment (SOIREE),
Deep-Sea Research II 48, Issues 11-12, pp. 2425-2773.
Maldonado, M. T. et al. (2001). Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment.
Limnol. Oceanogr. 46,1802-1808.
Oliver, J. L. et al. (2004). The heterotrophic bacterial response during the Southern Ocean Iron Experiment (SOFeX).
Limnol. Oceanogr. 49, 2129-2140.
Ridgwell, A. J. (2000). Climatic effect of Southern Ocean Fe fertilization: Is the jury still out?
Geochem. Geophys., Geosys. 1, 2000GC000120
Rijkenberg, M. J. A. et al. (2005). The influence of UV irradiation on the photoreduction of iron in the Southern Ocean.
Marine Chem. 93, 119-129.
Tagliabue, A., Sallée, J.-B., Bowie A.R., Lévy, M., Swart, S., Boyd, P.W. (2014). Iron-binding ligands and their role in the ocean biogeochemistry of iron
Nature Geoscience, 7, 314-320.
Twining, B. S., Baines, S. B., Fisher, N. S. (2004). Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX).
Limnol. Oceanogr. 49, 2115-2128.
Twining, B. S., Baines, S. B., Fisher, N. S., Landry, M. R. (2004). Cellular iron contents of plankton during the Southern Ocean Iron Experiment (SOFeX).
Deep-Sea Res. I 51, 1827-1850.
van Oijen, T. et al. (2005). Enhanced carbohydrate production by Southern Ocean phytoplankton in response to in situ iron fertilization.
Marine Chem. 93, 33-52.
Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W., Law, C. S. (2000). Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.
Nature 407, 730-733.
Wingenter, O. W. et al. (2004). Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments.
Proc. Nat. Acad. Sci. 101, 8537-8541.
Yoon, J., et al. (2018). Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project.
Biogeosciences 15. 5847-5889. https://doi.org/10.5194/bg-15-5847-2018
Geoengineering Comparisons
GESAMP (2019). “High level review of a wide range of proposed marine geoengineering techniques”.
(Boyd, P.W. and Vivian, C.M.G., eds.). (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UN Environment/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP No. 98, 144 p.
Huesemann, M. H. (2008). Ocean fertilization and other climate change mitigation strategies: an overview.
Mar. Ecol. Prog. Ser. 364, 243-250.
Izrael, Y. A., Ryaboshapko, A. G., Petrov, N. N. (2009). Comparative analysis of geo-engineering approaches to climate stabilization.
Russian Meteorology and Hydrology 34, 335-347.
Jones, I. S. F., Young, H. E. (1997). Engineering a large sustainable world fishery.
Environmental Conservation 24, 99-104.
Keating-Bitonti, C. (2022). Geoengineering: Ocean Iron Fertilization
Congressional Research Service Report, R47172, 16 pp.
Lampitt, R. S. et al. (2008). Ocean fertilization: a potential means of geoengineering?
Philosophical Transactions of the Royal Society 366, 3919-3945.
Schneider, S. H. (2008). Geoengineering: could we or should we make it work?
Philosophical Transactions of the Royal Society366, 3843-3862.
Iron and Phytoplankton
Abelmann, A. et al. (2006). Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean.
Paleoceanography 21, doi:10.1029/2005PA001199.
Banse, K. (1991). Rates of phytoplankton cell division in the field and in iron enrichment experiments.
Limnol. Oceanogr. 36,1886-1898.
Barber, R. T., Chavez, F. P. (1991). Regulation of primary productivity rate in the equatorial Pacific.
Limnol. Oceanogr. 36,1803-1815.
Blain, S. et al. (2004). Availability of iron and major nutrients for phytoplankton in the northeast Atlantic Ocean.
Limnol. Oceanogr. 49, 2095-2104.
Brand, L. E. (1991). Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production.
Limnol. Oceanogr. 36,1756-1771.
Buma, A. G. J. et al. (1991). Metal enrichment experiments in the Weddell-Scotia Seas: Effects of iron and manganese on various plankton communities.
Limnol. Oceanogr. 36,1865-1878.
Chavez, F. P. et al. (1991). Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton.
Limnol. Oceanogr. 36,1816-1833.
Coale, K. H. et al. (2003). Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W.
Deep-Sea Res. II 50, 635-653.
Coale, K.H., Wong, M. (2019). Ocean Iron Fertilization
in Encyclopedia of Ocean Sciences (3nd Ed), JH Steel (ed), Academic Press, pp 429-446.
Fennel, K. et al. (2003). Impacts of iron control on phytoplankton production in the modern and glacial Southern Ocean.
Deep-Sea Res. II 50, 833-851.
Green, R. M., Geider, R. J., Falkowski, P. G. (1991). Effect of iron limitation on photosynthesis in a marine diatom.
Limnol. Oceanogr. 36,1772-1782.
Helbling, E. W., Villafañe, V., Holm-Hansen, O. (1991). Effect of iron on productivity and size distribution of Antarctic phytoplankton.
Limnol. Oceanogr. 36,1879-1885.
Hutchins, D.A., Boyd, P.W. (2016). Marine phytoplankton and the changing ocean iron cycle
Nature Climate Change, 6, 1072-1079.
Jones, I. S. F. (2002). Primary Production in the Sulu Sea.
Proceedings of Indian Academy of Sciences(Earth & Planetary Sciences) 111, 209-213.
LaRoche, J., Breitbarth, E. (2005). Importance of the diazotrophs as a source of new nitrogen in the ocean.
J. Sea Res. 53, 67-91.
Lenes, J. M. et al. (2001). Iron fertilization and the Trichodesmium response on the West Florida shelf.
Limnol. Oceanogr. 46, 1261-1277.
Martin J. H., Fitzwater S. E. (1988). Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic.
Nature 331, 341–343
Martin, J.H., Coale, K.H., Johnson, K.S. et al. (1994). Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean
Nature, 371, 123-129.
Putland, J. N., Whitney, F. A., Crawford, D. W. (2004). Survey of bottom-up controls of Emiliania huxleyi in the Northeast Subarctic Pacific.
Deep-Sea Res. I 51, 1793-1802.
Rohr, T., Harrison, C., Long, M., Gaube, P., Doney, S. (2020). Eddy-modified iron, light and phytoplankton cell division in the simulated southern ocean.
Global Biogeochemical Cycles, 34:6, e2019GB006380.
Rohr, T., Harrison, C., Long, M., Gaube, P., Doney, S. (2020). The simulated biological response to Southern Ocean eddies via biological rate modification and physical transport.
Global Biogeochemical Cycles, 34:6, e2019GB006385.
Saito, H. et al. (2006). Nutrient and phytoplankton dynamics during the stationary and declining phases of a phytoplankton bloom induced by iron-enrichment in the eastern subarctic Pacific.
Deep-Sea Res. II 53, 2168-2181.
Sarthou, G., Timmermans, K.R., Blain, S., Tréguer, P. (2005). Growth physiology and fate of diatoms in the ocean: A review.
J. Sea Res. 53, 25-42.
Schoemann, V. et al. (1998). Effects of phytoplankton blooms on the cycling of manganese and iron in coastal waters.
Limnol. Oceanogr. 43, 1427-1441.
Schoemann, V. et al. (2005). Phaeocystis blooms in the global ocean and their controlling mechanisms: A review.
J. Sea Res. 53, 43-66.
Smetacek, V., Assmy, P., Henjes, J. (2004). The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles.
Antarctic Sci. 16, 541-558.
Tagliabue, A., Twining, B.S., Barrier, N., Maury, O., Berger, M., Bopp, L. (2023). Ocean iron fertilization may amplify climate change pressures on marine animal biomass for limited climate benefit
Global Change Biology, 29, 5250-5260.
Timmermans, K. R. et al. (2001). Growth rates of large and small Southern Ocean diatoms in relation to availability of iron in natural seawater.
Limnol. Oceanogr. 46, 260-266.
Timmermans, K. R., van der Wagt, B., de Baar, H. J. W. (2004). Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean.
Limnol. Oceanogr. 49, 2141-2151.
Timmermans, K. R., van der Wagt, B., Veldhuis, M. J. W., de Baar, H. J. W. (2005). Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation.
J. Sea Res. 53, 109-120.
Trick, C. G. et al. (2010). Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas.
Proc. Nat. Acad. Sci. doi: 10.1073/pnas.091057910.
Tsuda, A. et al. (2003). A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom.
Science 300, 958-961.
Veldhuis, M. J. W., Timmermans, K. R., Croot, P. L., van der Wagt, B. (2005). Picophytoplankton; a comparative study of their biochemical composition and photosynthetic properties.
J. Sea Res. 53, 7-24.
Visser, F. et al. (2003). The role of the reactivity and content of iron of aerosol dust on growth rates of two Antarctic diatom species.
J. Phycol. 39, 1085-1094.
Iron and Silica
Brzezinski, M. A. et al. (2001). Silicon dynamics within an intense open-ocean diatom bloom in the Pacific sector of the Southern Ocean.
Deep-Sea Res. II 48, 3997-4018.
Brzezinski, M. A., Jones, J. L., Demarest, M. S. (2005). Control of silica production by iron and silicic acid during the Southern Ocean Iron Experiment (SOFeX).
Limnol. Oceanogr. 50, 810-824.
Coale, K. H. et al. (2004). Southern Ocean Iron Enrichment Experiment: Carbon cycling in high- and low-Si waters.
Science 304, 408-414.
Hutchins, D. A., Bruland, K. W. (1998). Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime.
Nature 393, 561-564.
Ingall, E.D., Diaz, J.M., Longo, A.F., Oakes, M., Finney, L., Vogt, S., Yager, P.L., Twining, B.S., Brandes, J.A. (2013). Role of biogenic silica in the removal of iron from the Antarctic seas
Nature Communications, 4, 1981.
Takeda, S. (1998). Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters.
Nature 393, 774-777.
Iron Availability
Borer, P. M. et al. (2005). Effect of siderophores on light-induced dissolution of colloidal iron(III) (hydr)oxides.
Marine Chem. 93, 179-193.
Boye, M. et al. (2005). Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean.
Marine Chem. 96, 257-271.
Chen, M. et al. (2003). Marine diatom uptake of iron bound with natural colloids of different origins.
Marine Chem. 81, 177-189.
Chen, M., Wang, W.-X., Guo, L. (2004). Phase partitioning and solubility of iron in natural seawater controlled by dissolved organic matter.
Glob. Biogeochem. Cycles 18, doi:10.1029/2003GB002160.
Coale, K.H., Wong, M. (2019). Ocean Iron Fertilization
in Encyclopedia of Ocean Sciences (3nd Ed), JH Steel (ed), Academic Press, pp 429-446.
Hassler, C.S., Schoemann, V., Nichols, C.M., Butler, E.C.V., Boyd, P.W. (2010). Saccharides enhance iron bioavailability to Southern Ocean phytoplankton
PNAS, 108(3), 1076-1081.
Hogle, S.L., Dupont, C.L., Hopkinson, B.M., King, A.L., Buck, K.N., Roe, K.L., Stuart, R.K., Allen, A.E., Mann, E.L., Johnson, Z.I., Barbeau, K.A. (2018). Pervasive iron limitation at subsurface chlorophyll maxima of the California Current
PNAS, 115(52), 13300-133-05
Morel, F. M. M., Hudson, R. J. M., Price, N. M. (1991). Limitation of productivity by trace metals in the sea.
Limnol. Oceanogr. 36,1742-1755.
Reid, R. T., Butler, A. (1991). Investigation of the mechanism of iron acquisition by the marine bacterium Alteromonas luteoviolaceus: Characterization of siderophore production.
Limnol. Oceanogr. 36,1783-1792.
Schoemann, V. et al. (2001). Effects of photosynthesis on the accumulation of Mn and Fe by Phaeocystis colonies.
Limnol. Oceanogr. 46, 1065-1076.
Shaked, Y., Twining, B., Tagliabue, A., Maldonado, M.T. (2021). Probing the bioavailability of dissolved iron to marine eukaryotic phytoplankton using in situ single cell iron quotas.
Global Biogeochemical Cycles, 35:8, e2021GB006979. DOI: 10.1029/2021GB006979
Tagliabue, A., Bowie, A.R., DeVries T., Ellwood, M.J., Landing, W.M., Ohnemus, D.C., Twining, B.S., Boyd, P.W. (2019). The interplay between regeneration and scavenging fluxes drives ocean iron cycling
Nature Communications, 10, 4960.
Wells, M. L. (2003). The level of iron enrichment required to initiate diatom blooms in HNLC waters.
Marine Chem. 82, 101-114.
Wu, J. et al. (2001). Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific.
Science293, 847-849.
Iron Biogeochemistry
Babakhani, P., Phenrat, T., Baalousha, M., Soratana, K., Peacock, C.L., Twining, B.S., Hochella Jr., M.F. (2022). Potential use of engineered nanoparticles in ocean fertilization for large-scale atmospheric carbon dioxide removal
Nature Nanotechnology, DOI: 10.1038/s41565-022-01226-w
Blain, S. et al. (2001). A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean.
Deep-Sea Res. I 48, 163-187.
Boyd, P.W., Ellwood, M.J. (2010). The biogeochemical cycle of iron in the ocean
Nature Geoscience
Bucciarelli, E., Blain, S., Tréguer, P. (2001). Iron and manganese in the wake of the Kerguelen Islands (Southern Ocean).
Marine Chem. 73, 21-36.
de Baar, H. J. W. et al. (2008). Efficiency of carbon removal per added iron in ocean iron fertilization.
Mar. Ecol. Prog. Ser. 364, 269-282.
de Baar, H. J. W., La Roche, J. (2003). Trace Metals in the Oceans: Evolution, Biology and Global Change.
In Marine Science Frontiers for Europe. Wefer, G., Lamy, F., Mantoura, F. (eds), Springer-Verlag Berlin Heidelberg New York Tokyo, pp 79-105.
Hunter, K.A., Boyd, P.W. (2007). Iron-binding ligands and their role in the ocean biogeochemistry of iron
Environmental Chemistry, 4(4), 221-232.
Kunde, K., Wyatt, N.J., González‐Santana, D., Tagliabue, A., Mahaffey, C., Lohan, M.C. (2019). Iron distribution in the Subtropical North Atlantic: The pivotal role of colloidal iron
Global Biogeochemical Cycles, 33, 1532-1547.
Martin, J. H., Gordon, R. M., Fitzwater, S. E. (1991). The case for iron.
Limnol. Oceanogr. 36,1793-1802.
Moore, J.K., S.C. Doney, D.M. Glover, I.Y. Fung (2002). Iron cycling and nutrient limitation patterns in surface waters of the world ocean
Deep Sea Research Part II, 49, 463–508
Tagliabue, A., Bowie, A.R., Boyd, P.W., Buck, K.N., Johnson, K.S., Saito, M.A. (2017). The integral role of iron in ocean biogeochemistry
Nature, 543, 51-59
Tagliabue, A., Bowie, A.R., DeVries T., Ellwood, M.J., Landing, W.M., Ohnemus, D.C., Twining, B.S., Boyd, P.W. (2019). The interplay between regeneration and scavenging fluxes drives ocean iron cycling
Nature Communications, 10, 4960.
Tagliabue, A., Buck, K.N., Sofen, L.E., Twining, B.S., Aumont, O., Boyd, P.W., Capara, S., Homoky, W.B., Johnson, R., König, D., Ohnemus, D.C., Sohst, B., Sedwick, P. (2023). Authigenic mineral phases as a driver of the upper-ocean iron cycle
Nature, 620, 104-109.
Wu, J., Boyle, E. (2002). Iron in the Sargasso Sea: Implications for the processes controlling dissolved Fe distribution in the ocean.
Glob. Biogeochem. Cycles 16, doi:10.1029/2001GB001453.
Iron in Seawater
Black, E.E., Kienast, S.S., Lemaitre, N., Lam, P.J., Anderson, R.F., Planquette, H., Planchon, F., Buesseler, K.O. (2020). Ironing out Fe residence time in the dynamic upper ocean.
Global Biogeochemical Cycles, 34:9, e2020GB006592.
Bowie, A. R. et al. (2006). A community-wide intercomparison exercise for the determination of dissolved iron in seawater.
Marine Chemistry 98, 81-99, doi:10.1016/j.marchem.2005.07.002.
Boyd, P.W., Ellwood, M.J. (2010). The biogeochemical cycle of iron in the ocean
Nature Geoscience
Capara, S., Buck, K.N., Gerringa, L., Rijkenberg, M., Monticelli, D. (2016). A compilation of iron speciation data for open oceanic waters
Frontiers Marine Science, 3, 221
Martin J. H., Gordon R. M., Fitzwater S. E. (1990). Iron in Antarctic waters.
Nature 345, 156–158
O’Sullivan, D. W. et al. (1991). Measurement of Fe(II) in surface water of the equatorial Pacific.
Limnol. Oceanogr. 36,1727-1741.
Tagliabue, A., Sallée, J.-B., Bowie A.R., Lévy, M., Swart, S., Boyd, P.W. (2014). Iron-binding ligands and their role in the ocean biogeochemistry of iron
Nature Geoscience, 7, 314-320.
Weber, T. (2020). Southern Ocean upwelling and the marine iron cycle.
Geophysical Research Letters, 47:20, e2020GL090737.
Methods and Monitoring
Abraham, E. R., Law, C.S., Boyd, P.W., Lavender, S.J., Maldonado, M.T., Bowie, A.R. (2000). Importance of stirring in the development of an iron-fertilized phytoplankton bloom.
Nature 407, 727-730.
Bach, L.T., Boyd, P.W. (2021). Seeking natural analogs to fast-forward the assessment of marine CO2 removal
PNAS Perspective, 118(40), e2106147118.
Boyd, P.W., H. Claustre, L. Legendre, J.-P. Gattuso, P.-Y. Le Traon (2023). Operational monitoring of open-ocean carbon dioxide removal deployments: Detection, attribution, and determination of side effects
In: Frontiers in Ocean Observing: Emerging Technologies for Understanding and Managing a Changing Ocean. E.S. Kappel, V. Cullen, M.J. Costello, et al. (Eds). Oceanography, 36(Sup 1), 2–10
Emerson, D. (2019). Biogenic Iron Dust: A Novel Approach to Ocean Iron Fertilization as a Means of Large Scale Removal of Carbon Dioxide From the Atmosphere
Frontiers in Marine Science, 6.
Ho D.T., J.R. Ledwell, W.M Smethie Jr. (2008). Use of SF5CF3 for ocean tracer release experiments
Geophysical Research Letters, 35(4)
Lannuzel, D. et al. (2005). Development of a sampling and flow injection analysis technique for iron determination in the sea ice environment.
Anal. Chim. Acta 556, 476–483.
Nishioka, J., Takeda, S., de Baar, H.J.W. et al. (2005). Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean.
Marine Chem. 95, 51-63.
Westberry, T.K., Behrenfeld, M.J., Milligan, A.J., Doney, S.C. (2013). Retrospective satellite ocean color analysis of purposeful and natural ocean iron fertilization
Deep Sea Research Part I: Oceanographic Research Papers 73, 1-16.
Modeling Studies
Arrigo, K. R., Tagliabue, A. (2005). Iron in the Ross Sea: 2. Impact of discrete iron addition strategies.
J. Geophys. Res. 110, doi:10.1029/2004JC002568.
Chai, F. et al. (2007). Modeling responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific Ocean.
Glob. Biogeochem. Cycles 21, doi:10.1029/2006GB002804.
DA Siegel, T DeVries, SC Doney, T Bell (2021). Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies
Environmental Research Letters, 16, 104003
Dutkiewicz, S., Follows, M., Parekh, P. (2005). Interactions of the iron and phosphorus cycles: A three-dimensional model study.
Glob. Biogeochem. Cycles 19, doi:10.1029/2004GB002342.
Fujii, M., Chai, F. (2009). Influences of initial plankton biomass and mixed-layer depths on the outcome of iron-fertilization experiments.
Deep-Sea Res. II 56, doi:10.1016/j.dsr2.2009.07.007.
Fujii, M., Yoshie, N., Yamanaka, Y., Chai, F. (2005). Simulated biogeochemical responses to iron enrichments in three high nutrient, low chlorophyll (HNLC) regions.
Prog. Oceanogr. 64, 307-324.
Gnanadesikan, A., Marinov, I. (2008). Export is not enough: nutrient cycling and carbon sequestration.
Mar. Ecol. Prog. Ser. 364: 289-294.
Gnanadesikan, A., Sarmiento, J. L., Slater, R. D. (2003). Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production.
Glob. Biogeochem. Cycles 17, doi:10.1029/2002GB001940.
Henson, S.A., C. Laufkötter, S. Leung, S. Giering, H.I. Palevsky, E.L. Cavan (2022). Uncertain response of ocean biological carbon export in a changing world
Nature Geoscience, 15, 248-254
Ito, T. et al. (2005). The Antarctic Circumpolar Productivity Belt.
Geophys. Res. Lett. 32, doi:10.1029/2005GL023021.
Letelier, R., Strutton, P., Karl, D. (2008). Physical and ecological uncertainties in the widespread implementation of controlled upwelling in the North Pacific Subtropical Gyre.
Mar. Ecol. Prog. Ser. 371, 305–308.
Moore, J.K., S.C. Doney, K. Linday (2004). Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model.
Global Biogeochemical Cycles, 18(4), GB4028
Oschlies, A. (2009). Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake.
Biogeosciences 6, 1603-1613.
Oschlies, A., Pahlow, M., Yool, A., Matear, R.J. (2010). Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice.
Geophys. Res. Lett. 37, L04701.
Parekh, P., Follows, M. J., Boyle, E. (2004). Modeling the global ocean iron cycle.
Glob. Biogeochem. Cycles 18, doi:10.1029/2003GB002061.
Parekh, P., Follows, M. J., Boyle, E. A. (2005). Decoupling of iron and phosphate in the global ocean.
Glob. Biogeochem. Cycles 19, doi:10.1029/2004GB002280.
Pasquer, B. et al. (2005). Linking ocean biogeochemical cycles and ecosystem structure and function: results of the complex SWAMCO-4 model.
J. Sea Res. 53, 93-108.
Platt, T. et al. (2003). Nitrate supply and demand in the mixed layer of the ocean.
Mar. Ecol. Prog. Ser. 254, 3-9.
Sarmiento, J. L. et al. (2004). High-latitude controls of thermocline nutrients and low latitude biological productivity.
Nature 427, 56-60.
Sarmiento, J. L., Dunne, J., Armstrong, R. A. (2004). Do we now understand the ocean’s biological pump?
U.S. JGOFS News 12, 1-5.
Sarmiento, J. L., Orr, J. C. (1991). Three-dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry.
Limnol. Oceanogr. 36,1928-1950.
Schlitzer, R. (2002). Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates.
Deep-Sea Research II 49, 1623-1644.
Tagliabue A., O. Aumont, R. DeAth, J.P. Dunne JP, S. Dutkiewicz, et al. (2016). How well do global ocean biogeochemistry models simulate dissolved iron distributions?
Global Biogeochemical Cycles, 30(2), 149–174
Tagliabue, A., Arrigo, K. R. (2005). Iron in the Ross Sea: 1. Impact on CO2 fluxes via variation in phytoplankton functional group and non-Redfield stoichiometry.
J. Geophys. Res. 110, doi:10.1029/2004JC002531.
Veldhuis, M.J.W. (Ed.) (2005). Iron Resources and Oceanic Nutrients - Advancement of Global Environmental Simulations. Special Volume: Journal of Sea Research
Journal of Sea Research 53, Issues 1-2, pp. 1-120
Xiu, P., Chai, F. (2010). Modeling the effects of size on patch dynamics of an inert tracer.
Ocean Sci. 6, 1-9.
Yoshie, N., Fujii, M., Yamanaka, Y. (2005). Ecosystem changes after the SEEDS iron fertilization in the western North Pacific simulated by a one-dimensional ecosystem model.
Prog. Oceanogr. 64, 283-306.
Zahariev, K., J.R. Christian, K.L. Denman (2008). Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and N2 fixation
Progress in Oceanography, 77(1), 56-82
Zeebe, R. E., Archer, D. (2005). Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels.
Geophys. Res. Lett. 32, doi:10.1029/2005GL022449.
Natural Iron Fertilization
Hamme R.C., P.W. Webley, W.R. Crawford, F.A. Whitney, M.D. DeGrandpre, et al. (2010). Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific
. Geophysical Research Letters, 37, L19604
Wang, Y., H.-H. Chen, R. Tang, D. He, Z. Lee, H. Xue, M. Wells, E. Boss, F. Chai (2022). Australian fire nourishes ocean phytoplankton bloom
Science of the Total Environment, 807(1), 150775
Weis, J., Z. Chase, C. Schallenberg, P.G. Strutton, A.R. Bowie, S.L. Fiddes (2024). One-third of Southern Ocean productivity is supported by dust deposition
Nature, 629, 603-608.
Nitrogen Fixation
Coale, K.H., Wong, M. (2019). Ocean Iron Fertilization
in Encyclopedia of Ocean Sciences (3nd Ed), JH Steel (ed), Academic Press, pp 429-446.
Edwards, A. M., Platt, T., Sathyendranath, S. (2004). The high-nutrient, low-chlorophyll regime of the ocean: limits on biomass and nitrate before and after iron enrichment.
Ecological Modelling 171, 103–125.
Fennel, K. (2008). Widespread implementation of controlled upwelling in the North Pacific Subtropical Gyre would counteract diazotrophic N2 fixation.
Mar. Ecol. Prog. Ser. 371, 301–303.
Karl, D. M., Letelier, R. M. (2008). Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes.
Mar. Ecol. Prog. Ser. 364: 257-268.
Policy, Law and Conduct
American Geophysical Union (2022). AGU Climate Intervention Engagement: Leading the development of and ethical framework.
AGU Whitepaper, 14pp.
APPG (All-Party Paliamentary Group for the Ocean, UK) (2022). The Ocean: Turning the tide on climate change
Bach L.T., D.T. Ho, P.W. Boyd, M.D. Tyka (2023). Toward a consensus framework to evaluate air–sea CO2 equilibration for marine CO2 removal
Limnology and Oceanography Letters, 8(5), 685–691
Broder, S.P., Haward, M. (2013). The international legal regimes governing ocean iron fertilization
In: Regions, Institutions, and Law of the Sea, Chapter 12, pg 185-220.
Buesseler, K. O., Doney, S.C., Karl, D.M., et al. (2008). Ocean Iron Fertilization: Moving Forward in a Sea of Uncertainty.
Science 319, 162.
Buesseler, K., Leinen, M., Ramakrishna, K. (2022). Removing carbon dioxide: first, do not harm
Nature Correspondence, 606, 864.
Freestone, D., Rayfuse, R. (2008). Ocean iron fertilization and international law.
Mar. Ecol. Prog. Ser. 364: 227–233
Grant, N., A. Hawkes, S. Mittal, A. Gambhir (2021). The policy implications of an uncertain carbon dioxide removal potential
Joule, 5(10), 2593-2605
Keating-Bitonti, C. (2022). Geoengineering: Ocean Iron Fertilization
Congressional Research Service Report, R47172, 16 pp.
Leinen, M. (2008). Building relationships between scientists and business in ocean iron fertilization.
Mar. Ecol. Prog. Ser. 364, 251-256.
Lin, A. C. (2013). International Legal Regimes & Principles Relevant to Geoengineering.
In W. C. G. Burns & A. Strauss (Eds.), Climate Change Geoengineering: Legal, Political and Philosophical Perspectives (pp. 182-199). Cambridge: Cambridge University Press.
Loomis, R., Cooley, S.R., Collins, J.R., Engler, S., Suatoni, L. (2022). A code of conduct is imperative for ocean carbon dioxide removal research
Frontiers in Marine Science, 9, 872800.
Mayo-Ramsay, J. (2012). Climate Change Mitigation Strategies: Ocean Fertilisation - The argument for and against.
Lambert Academic Publishing, 288 pp.
Nawaz, S. and Lezaun, J. (2024). Grappling with a sea change: Tensions in expert imaginaries of marine carbon dioxide removal
Global Environmental Change, 85, 102806.
Ocean Conservancy (2023). Precautionary principles for ocean carbon dioxide removal research
Ocean Conservancy
Orbach, M. K. (2008). Cultural context of ocean fertilization.
Mar. Ecol. Prog. Ser. 364: 235-242.
Peterson, J. E. (1995). Can Algae Save Civilization? A Look at Technology, Law, and Policy Regarding Iron Fertilization of the Ocean to Counteract the Greenhouse Effect.
Colorado Journal of International Environmental Law & Policy 61:48.
Rehdanz, K, R.L Tol, and P. Wetzel (2005). Ocean carbon sinks and international climate policy.
Energy Policy 34:18
Rohr, T. (2019). Southern Ocean Iron Fertilization: An Argument Against Commercialization but for Continued Research Amidst Lingering Uncertainty.
Journal of Science Policy & Governance, Vol. 15, October 2019.
Sagarin, R., Dawson, M., Karl, D., Michael, A., Murray, B., Orbach, M., St. Clair, N. (2007). Iron fertilization in the ocean for climate mitigation: legal, economic, and environmental challenges
Nicholas Institute, Duke University, NI WP 07-07 , 14 pp(Working Paper)
Schiermeijer, Q. (2003). The oresmen.
Nature 421, 109-110.
Scott, K. N. (2005). The Day After Tomorrow: Ocean CO2 Sequestration and the Future of Climate Change.
Georgetown International Environmental Law Review 18:45.
Silverman-Roati, K., Webb, R.M., Gerrard, M. (2022). Removing carbon dioxide through ocean fertilization: Legal challenges and opportunities
Columbia Law School, Sabin Center for Climate Change Law, 62 pp.
Strong, A. et al. (2009). Ocean fertilization: time to move on.
Nature 461, 347-348, doi:10.1038/461347a.
Strong, A.L., Cullen, J.J., Chisholm, S.W. (2009). Ocean fertilization: Reviewing the science, policy, and commercial activity and charting a new course forward.
Oceanography 22(3): 236-261.
Urban, E., Haag, F. (2011). Organizations urge caution on ocean fertilization.
Eos, 89:19, 179-179.
van Doorn, E., C.A. Marandino, A.J. Peters, M. Keywood (2024). Science, international law, and policy across the air–sea interface
Elementa 12:1, 00047.
Primary Production & Carbon Export
Aksnes, D. and Wassmann, P. (1993). Modeling the significance of zooplankton grazing for export production.
Limnol. Oceanogr., 38, 978–985
Berger, W. H., Wefer, G. (1991). Productivity of the glacial ocean: Discussion of the iron hypothesis.
Limnol. Oceanogr. 36,1899-1918.
Buesseler, K. and Boyd, P. (2009). Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean.
Limnol. Oceanogr., 54, 1210–1232
Buesseler, K. O. et al. (2007). Revisiting carbon flux through the ocean's twilight zone.
Science 316, 567-570.
Cavan, E. et al. (2017). Role of zooplankton in determining the efficiency of the biological carbon pump.
Biogeosciences 14. 177-186.
Cavan. E. et al. (2015). Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets.
Geophys. Res. Lett., 42, 821–830,
Fiedler, P. C., Philbrick, V., Chavez, F. P. (1991). Oceanic upwelling and productivity in the eastern tropical Pacific.
Limnol. Oceanogr. 36,1834-1850.
Gervais, F., Riebesell, U., Gorbunov, M. Y. (2002). Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone.
Limnol. Oceanogr. 47, 1324-1335.
Henson, S., Yool, A., Sanders, R. (2015). Variability in efficiency of particulate organic carbon export: A model study.
Global Biogeochem. Cycles, 29, 33–45
Hilting, A. et al. (2008). Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene-Eocene biological pump.
Paleoceanography, 23, PA3222
Kwon, E. et al. (2009). The impact of remineralization depth on the air-sea carbon balance.
Nat. Geosci., 2, 630–635
Lampitt, R. et al. (1990). What happens to zooplankton faecal pellets? Implications for vertical flux.
Mar. Biol., 23, 15–23
Lavery, T. J. et al. (2010). Iron defecation by sperm whales stimulates carbon export in the Southern Ocean.
Proc. Roy. Soc. Biol. 277, 3527-3531.
Laws, E. et al. (2000). Temperature effects on export production in the open ocean.
Global Biogeochem. Cycles., 14, 1231–1246
Le Moigne, F. et al. (2016). What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?
Geophys. Res. Lett., 43, 4457–4466
Maiti, K. et al. (2013). An inverse relationship between production and export efficiency in the Southern Ocean.
Geophys. Res. Lett., 40, 1557–1561
Martin, J. et al. (1987). VERTEX: carbon cycling in the north east Pacific.
Deep-Sea Res., 34, 267–285
Tagliabue, A., Twining, B.S., Barrier, N., Maury, O., Berger, M., Bopp, L. (2023). Ocean iron fertilization may amplify climate change pressures on marine animal biomass for limited climate benefit
Global Change Biology, 29, 5250-5260.
Winckler, G. et al. (2016). Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.
PNAS, 113, 6119–6124
Reports
APPG (All-Party Paliamentary Group for the Ocean, UK) (2022). The Ocean: Turning the tide on climate change
Keating-Bitonti, C. (2022). Geoengineering: Ocean Iron Fertilization
Congressional Research Service Report, R47172, 16 pp.
National Academies of Sciences, Engineering, and Medicine. Authors: Doney, S.C., Buck, H., Buesseler, K., Iglesias-Rodriguez, M.D., Moran, K., Oschlies, A., Renforth, P., Roman, J., Sant, G.N., Siegel, D.A., Webb, R., White, A. (2021). A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration
Washington, DC: The National Academies Press
WRI (Leblin, K., Northrop, E., McCormick, C., Bridgwater, E.) (2022). Towards responsible and informed ocean-based carbon dioxide removal: Research and governance priorities
World Resources Institute, November 15, 2022, 102 pp.
Sulfide Production
Law, C. S. (2008). Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions.
Mar. Ecol. Prog. Ser. 364: 283-288.
Le Clainche, Y., Levasseur, M., Vézina, A. et al. (2006). Modeling analysis of the effect of iron enrichment on dimethyl sulfide dynamics in the NE Pacific (SERIES experiment)
J. Geophys. Res. 111, doi:10.1029/2005JC002947.
Liss, P., Chuck, A., Bakker, D.C.E., Turner, S. (2005). Ocean fertilization with iron: effects on climate and air quality
Tellus, 57B: 269-271.
Turner, S. M., Harvey, M.J., Law, C.S., Nightingale, P.D., Liss, P.S. (2004). Iron-induced changes in oceanic sulfur biogeochemistry.
Geophys. Res. Lett. 31, doi:10.1029/2004GL020296.
Synthesis Papers
Boyd, P. W. (2008). Implications of large-scale iron fertilization of the oceans.
Marine Ecology Progress Series, 364, 213-218.
Boyd, P. W. et al. (2007). Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions.
Science 315, 612-617.
Buesseler, K. O., Boyd, P. W. (2003). Will Ocean Fertilization Work?
Science 300, 67-68.
Coale, K.H., Wong, M. (2019). Ocean Iron Fertilization
in Encyclopedia of Ocean Sciences (3nd Ed), JH Steel (ed), Academic Press, pp 429-446.
de Baar, H. J. W. et al. (2005). Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment.
J. Geophys. Res. 110, doi:10.1029/2004JC002601.
Gattuso, J-P., Magnan, A.K., Bopp, L., Cheung, W.W.L., Duarte, C.M., Hinkel, J., Mcleod, E., Micheli, F., Oschlies, A., Williamson, P., Billé, R., Chalastani, V.I., Gates, R.D., Irisson, J-O., Middelburg, J.J., Pörtner, H-O., Rau, G.H. (2018). Ocean solutions to address climate change and its effects on marine ecosystems
Frontiers in Marine Science
Rohr, T. (2019). "Southern Ocean Iron Fertilization: An Argument Against Commercialization but for Continued Research Amidst Lingering Uncertainty".
Journal of Science Policy & Governance, Vol. 15, October 2019.
Unintended Consequences
Cullen, J. J., Boyd, P. W (2008). Predicting and verifying the intended and unintended consequences of large-scale ocean fertilization.
Mar. Ecol. Prog. Ser. 364, 295-301.
Denman, K. L. (2008). Climate change, ocean processes, and iron fertilization.
Mar. Ecol. Prog. Ser. 364: 219-225.
Fuhrman, J. A., Capone, D. G. (1991). Possible biogeochemical consequences of ocean fertilization.
Limnol. Oceanogr. 36,1951-1959.
Oschlies, A., W. Koeve, W. Rickels, K. Rehdanz (2010). Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization
Biogeosciences, 7(12), 4017-4035
White Papers
APPG (All-Party Paliamentary Group for the Ocean, UK) (2022). The Ocean: Turning the tide on climate change
Buesseler, K., Chai, F., Karl, D., Ramakrishna, K., Satterfield, T., Siegel, D., Smith, S., Webb R., Wells, M., Yoon, J-E., ExOIS Group (2022). Ocean iron fertilization: assessing its potential as a climate solution
Exploring Ocean Iron Solutions Group
Sagarin, R., Dawson, M., Karl, D., Michael, A., Murray, B., Orbach, M., St. Clair, N. (2007). Iron fertilization in the ocean for climate mitigation: legal, economic, and environmental challenges
Nicholas Institute, Duke University, NI WP 07-07 , 14 pp(Working Paper)
Silverman-Roati, K., Webb, R.M., Gerrard, M. (2022). Removing carbon dioxide through ocean fertilization: Legal challenges and opportunities
Columbia Law School, Sabin Center for Climate Change Law, 62 pp.